Feynman diagrams for phi phi -> phi phi

silverwhale
Messages
78
Reaction score
2

Homework Statement


Compute the matrix element for the scattering process \phi \phi \to \phi \phi

Homework Equations


The Lagrangian is given by
L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{\alpha}{2} \phi \partial_{\mu} \phi \partial^{\mu} \phi + \frac{\beta}{2} \phi^2 \partial_{\mu} \phi \partial^{\mu} \phi

The Attempt at a Solution


At tree level I included a 4 legged vertex diagram + 3 diagrams with an internal line. Is this correct? I get a delta function with 4 momenta ( multiplied with other terms) + product of 2 delta functions with 3 momenta (multiplied with other terms) equal to the scattering implitude multipplied by a delta function of 4 momenta.

Now my question is just what are the Feynman diagrams for the general process: \phi \phi \to \phi \phi
 
Physics news on Phys.org
If we consider an other case where the interaction term looks like c_1 \phi^3 + c_2 \phi^4, can one just sum up the feynman diagrams (for eg. tree level diagrams) for phi3 theory and phi4 theory to express the \phi \phi \to \phi \phi scattering?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top