- #1

- 29

- 0

## Homework Statement

Find and prove the recurrence relation for the Fibonacci cubed sequence.

## Homework Equations

By observation (blankly staring at the sequence for an hour) I've decided that the recurrence relation is G[tex]_{n}[/tex] = 3G[tex]_{n-1}[/tex] + 6G[tex]_{n-2}[/tex] - 3G[tex]_{n-3}[/tex] - G[tex]_{n-4}[/tex]

(where G is Fibonacci cubed)

## The Attempt at a Solution

My attempt was going to be to prove by induction, but for the n+1 case, I got:

G[tex]_{n+1}[/tex] = G[tex]_{n}[/tex] + F[tex]_{n}[/tex]*F[tex]_{n+1}[/tex]*F[tex]_{n-1}[/tex] + G[tex]_{n-1}[/tex]

Is there an identity that could get me further? Is there a different method anyone could suggest? Is there anything I can do at all?

edit: all that superscript is supposed to be subscript... I'm not sure what happened...

Last edited: