Fictitious Forces ⇔ Constraint Forces? (re: D'Alembert's Principle)

AI Thread Summary
Fictitious forces and constraint forces are distinct concepts in physics. Fictitious forces arise from non-inertial reference frames, such as the Coriolis force due to Earth's rotation, while constraint forces are linked to geometrical configurations, like the normal force on an inclined plane. Constraint forces self-adjust to balance opposing forces without doing work or changing momentum. The discussion emphasizes that not all forces lead to work, as work depends on the force's direction and the distance moved. Understanding the difference between these forces is crucial for accurate physical analysis.
Geremia
Messages
150
Reaction score
0
Are fictitious forces and constraint forces the same thing?
 
Physics news on Phys.org
No, fictitious forces are forces which arise from analyzing within a non-inertial reference frame. Constraint forces are those which arise from a geometrical configuration.

For example, a constraint force would be perhaps a normal force exerted by the surface an object rests on such as an inclined plane problem. As long as the object is on the inclined plane, the object's motion is constrained to be along the inclined plane.

For a fictitious force consider that the Earth is in fact a rotating reference frame and therefore non-inertial. This gives rise to the Coriolis force which is needed to correct calculations due to this fact. It is small in effect but needed especially in large-distanced calculations.
 
cmmcnamara said:
No, fictitious forces are forces which arise from analyzing within a non-inertial reference frame. Constraint forces are those which arise from a geometrical configuration.
Yes, but how can geometry cause forces? Isn't force a change in momentum? Doesn't force imply movement? If a force isn't doing work, how is it a force?
cmmcnamara said:
For example, a constraint force would be perhaps a normal force exerted by the surface an object rests on such as an inclined plane problem. As long as the object is on the inclined plane, the object's motion is constrained to be along the inclined plane.
Yes, but what causes the constraint force, if not inertial effects?
 
Geremia said:
Yes, but how can geometry cause forces? Isn't force a change in momentum? Doesn't force imply movement? If a force isn't doing work, how is it a force?Yes, but what causes the constraint force, if not inertial effects?
Constraint forces self-adjust so that they are exactly equal and opposite to the force they are opposing. So they do not do work and they do not cause a change in momentum. They balance other forces that would otherwise do work/cause change in momentum.

AM
 
One should remember that NET forces produce a change in momentum. Any one individual force may or may not lead to a change in momentum.

A force is not required to do work. Work is the dot product of force and distance, so if the distance is 0, or if the force is applied perpendicular to the direction of motion, then the force does no work.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top