Zorba
- 76
- 0
I am trying to figure out which substitution to use to get this integral done:
\int \frac{du}{\sqrt{u-u^2} \cdot (1+ub)}
When I plug it into Mathematica I get:
\sqrt{\frac{4}{b+1}} \cdot \texttt{arctan} \left ( \sqrt{\frac{(b+1)u}{1-u}} \right )
Any ideas about a suitable substitution?
\int \frac{du}{\sqrt{u-u^2} \cdot (1+ub)}
When I plug it into Mathematica I get:
\sqrt{\frac{4}{b+1}} \cdot \texttt{arctan} \left ( \sqrt{\frac{(b+1)u}{1-u}} \right )
Any ideas about a suitable substitution?