There is some very muddled thinking going on here.
For a start, the basic answer to the question is no.
The following only applies to additive (TV, type) colour reproduction: film is messy and different.
Analysis:
Colour imaging systems use three sensors with analysis curves which are definitely not just 'Red', 'Green' and 'Blue'. All three sensors cover a wide range of wavelengths and match, as closely as practicable, the eye's response with its three colour sensors.
See this Wikki link
http://en.wikipedia.org/wiki/CIE_1931_color_space. You
percieve a colour (note- not wavelength) because of the relative levels of the signals from the three (very broad band) sensors. These signals are not called RGB but xyz - they are reddish, greenish and bluish, if you like but R, G and B signals only emerge from the process when you want to
synthesise a colour. Many different combinations of light of different wavelengths will give you the same subjective 'colour' response. There is no reason to expect to perceive infra red as equal combinations of R,G and B - there is zero response of the blue(ish) sensors to i.r..
Synthesis:
It is possible to synthesise colours which will match the original, subjectively, using suitable combinations of levels of Red, Green and Blue light (Primaries), produced by, say, the phosphors on a TV screen and added together. To get a bright picture, these primaries may well not be 'spot' wavelengths. The RGB signals from the camera (etc) represent the signal which need to be applied to three phosphors (or equivalent) to produce the desired colour sensation.
If you are told that a certain RGB combination was produced from a single wavelength of light then you can work out that wavelength (Look at the CIE chart on the Wikki link) - but other parts of a real picture could have the same RGB combination. So you could not say that you could 'filter' out a particular wavelength - just eliminate a certain colour.
You
could identify areas of a picture which were dominated by 'generally far red' signals, where X is much higher than Y and Z, but that's all.