Final exam questions: estimators.

AI Thread Summary
The discussion focuses on two problems related to finding unbiased estimators. In the first problem, participants are tasked with determining the value of c for the statistic c(y1 + 2y2) to be an unbiased estimator for 1/theta, emphasizing that this involves setting the expected value equal to 1/theta. The second problem requires showing that W = (3/2n)ΣYi is an unbiased estimator for theta, with discussions on consistency and convergence criteria. Clarifications are sought regarding the conditions for consistency and how to derive an unbiased estimator for Ymax. The conversation highlights the importance of understanding the definitions and calculations involved in estimating parameters accurately.
semidevil
Messages
156
Reaction score
2
have a final exam on monday, and cannot figure out the stuff on estimators:

1) a random sample of size 2, y1, y2 is drawn from the pdf f(y, theta) = 2y(theta^2), 1 < y < 1/theta.

what must c equal if the statistic c(y1 + 2y2) is to be an unbiased estimator for 1/theta.

I really don't know how to approach anything that asks about estimators. I know that unbiasedness implies E(theta) = theta. But how do I work this problem?

2. Let y1...y2...yn be a random sample size n from pdf fy(y;theta) = 2y/theta^2, 0 <y < y < theta.

show that W = 3/2n summation (Yi) is a unbiased estimator theta.
 
Physics news on Phys.org
semidevil said:
have a final exam on monday, and cannot figure out the stuff on estimators:

1) a random sample of size 2, y1, y2 is drawn from the pdf f(y, theta) = 2y(theta^2), 1 < y < 1/theta.

what must c equal if the statistic c(y1 + 2y2) is to be an unbiased estimator for 1/theta.

I really don't know how to approach anything that asks about estimators. I know that unbiasedness implies E(theta) = theta. But how do I work this problem?

2. Let y1...y2...yn be a random sample size n from pdf fy(y;theta) = 2y/theta^2, 0 <y < y < theta.

show that W = 3/2n summation (Yi) is a unbiased estimator theta.
SOLUTION HINTS:
For both cases, an Unbiased Estimator \hat{\omega} of distribution parameter \omega satisfies:

1: \ \ \ \ \ \ \mathbf{E}(\hat{\omega}) \, \ = \, \ \int \hat{\omega} \, f(y; \, \omega) \, dy \, \ = \, \ \omega \ \ \ \ \ \ \mbox{(Unbiased Estimator)}

where f(y; ω) is the Probability Density Function.
Thus, problem solution will involve evaluation of the following (for Problems #1 & 2 above, respectively), where the given Estimator is shown in blue on the left and the distribution parameter being estimated in red on the right. Complete the necessary steps, and solve for any required parameters:

2: \ \ \ \ \ \mathbf{E}\{\color{blue}c(y_{1} \ + \ 2y_{2})\color{black}\} \ \ = \ \ c \left \{ \mathbf{E}(y_{1}) + 2\mathbf{E}(y_{2}) \right \} \ \ = \ \ 3c\mathbf{E}(y) \ \ = \ \ 3c\int_{\displaystyle 1}^{\displaystyle 1/\theta} y \, (2y\theta^{2}) \, dy \ \ \color{red} \ \ \mathbf{??=??} \ \ \ \ 1/\theta \ \ \ \ \ \textsf{(Solve for c)}

3: \ \ \ \ \mathbf{E}\left(\color{blue} \frac{3}{2n}\sum_{i\,=\,1}^{n}y_{i} \color{black} \right) \ \ = \ \ \frac{3}{2n} \sum_{i\,=\,1}^{n} \mathbf{E}(y_{i}) \ \ = \ \ \frac{3}{2n} \{n\mathbf{E}(y)\} \ \ = \ \ \frac{3}{2}\,\mathbf{E}(y) \ \ = \ \ \frac{3}{2} \int_{\displaystyle 0}^{\displaystyle \theta} y \left(\frac {2y} {\theta^{2}}\right) \, dy \color{red} \ \ \ \ \mathbf{??=??} \ \ \ \ \theta


~~
 
Last edited:
xanthym said:
SOLUTION HINTS:
For both cases, an Unbiased Estimator \hat{\omega} of distribution parameter \omega satisfies:

1: \ \ \ \ \ \ \mathbf{E}(\hat{\omega}) \, \ = \, \ \int \hat{\omega} \, f(y; \, \omega) \, dy \, \ = \, \ \omega \ \ \ \ \ \ \mbox{(Unbiased Estimator)}

where f(y; ω) is the Probability Density Function.
Thus, problem solution will involve evaluation of the following (for Problems #1 & 2 above, respectively), where the given Estimator is shown in blue on the left and the distribution parameter being estimated in red on the right. Complete the necessary steps.

2: \ \ \ \ \ \mathbf{E}\{\color{blue}c(y_{1} \ + \ 2y_{2})\color{black}\} \ \ = \ \ c \left \{ \mathbf{E}(y_{1}) + 2\mathbf{E}(y_{2}) \right \} \ \ = \ \ 3c\mathbf{E}(y) \ \ = \ \ 3c\int_{\displaystyle 1}^{\displaystyle 1/\theta} y \, (2y\theta^{2}) \, dy \ \ \color{red} \ \ \mathbf{??=??} \ \ \ \ 1/\theta \ \ \ \ \ \textsf{(Solve for c)}

3: \ \ \ \ \mathbf{E}\left(\color{blue} \frac{3}{2n}\sum_{i\,=\,1}^{n}y_{i} \color{black} \right) \ \ = \ \ \frac{3}{2n} \sum_{i\,=\,1}^{n} \mathbf{E}(y_{i}) \ \ = \ \ \frac{3}{2n} \{n\mathbf{E}(y)\} \ \ = \ \ \frac{3}{2}\,\mathbf{E}(y) \ \ = \ \ \frac{3}{2} \int_{\displaystyle 0}^{\displaystyle \theta} y \left(\frac {2y} {\theta^{2}}\right) \, dy \color{red} \ \ \ \ \mathbf{??=??} \ \ \ \ \theta


~~

thank you, this helps very much. I was able to understand and solve it better. I have a question though. for the first problem, on solving for c, what do I set the equation equal to? since it is probability, do I set it equal to 1?

and I do have a couple more estimator questins if you dot mind. on the second problem, is it consistent? from definition, it is consistent if it converges to 1. but I don't see how to prove it. also, how do I find an unbiased estimator on Ymax?
 
thank you, this helps very much. I was able to understand and solve it better. I have a question though. for the first problem, on solving for c, what do I set the equation equal to? since it is probability, do I set it equal to 1?

and I do have a couple more estimator questins if you dot mind. on the second problem, is it consistent? from definition, it is consistent if it converges to 1. but I don't see how to prove it. also, how do I find an unbiased estimator on Ymax?
For Problem #1, solve for "c" which makes the estimator unbiased, which (in this case) involves setting the Eq #2 integral equal to (1/θ). See Problem #1 statement for other info.

An estimator \hat{\omega} of distribution parameter \omega is Consistent if 2 conditions are satisified:

4: \ \ \ \ \textsf{Condition #1:} \ \ \ \ \ \lim_{n \longrightarrow \infty} \textbf{E}(\hat{\omega}) \, \, = \, \, \omega

5: \ \ \ \ \textsf{Condition #2:} \ \ \ \ \ \lim_{n \longrightarrow \infty} var(\hat{\omega}) \, \, = \, \, 0

where "n" is Sample Size. Regarding Problem #2, Condition #1 above is true since the estimator is unbiased for all "n". For Condition #2, compute the estimator variance (using techniques similar to those shown in Msg #2) with the following:

6: \ \ \ \ var(\hat{\omega}) \, \ = \, \ \textbf{E}(\hat{\omega}^{2}) \, - \, \textbf{E}^{2}(\hat{\omega})


~~
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top