Dustinsfl
- 2,217
- 5
Space of continuous functions.
Inner product <f,g>=\int_{-1}^{1}f(x)g(x)dx.
Find a monic polynomial orthogonal to all polynomials of lower degrees.
Taking a polynomial of degree 3.
x^3+ax^2+bx+c
Need to check \gamma, x+\alpha, x^2+\beta x+ \lambda
\int_{-1}^{1}(\gamma x^3+\gamma a x^2 +\gamma bx + \gamma c)dx
=\frac{\gamma x^4}{4}+\frac{\gamma a x^3}{3}+\frac{\gamma b x^2}{2}+\gamma c x|_{-1}^{1}
=\frac{2\gamma a}{3}+2\gamma c=0\Rightarrow c=-\frac{a\gamma}{3}
\int_{-1}^{1}(x^3+ax^2+bx+c)(x+\beta)dx
\int_{-1}^{1}\left(x^4+ax^3+bx^2-\frac{a\alpha x}{3}+\beta x^3 +\alpha\beta x^2+b\beta x-\frac{a\alpha\beta}{3}\right)dx=6+10b+10a\beta-10a\alpha\beta=0
What do I do with that?
Inner product <f,g>=\int_{-1}^{1}f(x)g(x)dx.
Find a monic polynomial orthogonal to all polynomials of lower degrees.
Taking a polynomial of degree 3.
x^3+ax^2+bx+c
Need to check \gamma, x+\alpha, x^2+\beta x+ \lambda
\int_{-1}^{1}(\gamma x^3+\gamma a x^2 +\gamma bx + \gamma c)dx
=\frac{\gamma x^4}{4}+\frac{\gamma a x^3}{3}+\frac{\gamma b x^2}{2}+\gamma c x|_{-1}^{1}
=\frac{2\gamma a}{3}+2\gamma c=0\Rightarrow c=-\frac{a\gamma}{3}
\int_{-1}^{1}(x^3+ax^2+bx+c)(x+\beta)dx
\int_{-1}^{1}\left(x^4+ax^3+bx^2-\frac{a\alpha x}{3}+\beta x^3 +\alpha\beta x^2+b\beta x-\frac{a\alpha\beta}{3}\right)dx=6+10b+10a\beta-10a\alpha\beta=0
What do I do with that?