Math10 said:
Homework Statement
Find a particular solution of y"+2y'+y=8x^2*cosx-4xsinx. The answer is yp=-(14-10x)cosx-(2+8x-4x^2)sinx.
Homework Equations
None.
The Attempt at a Solution
r^2+2r+1=0
(r+1)^2=0
r=-1, -1
y=Axe^(-x)+Be^(-x)
So what should the initial guess yp be for this problem? How to find the initial guess yp?
Determine the Green's Function ##G(x)## for ##y'' + 2 y' + y##; this is the solution ##G(x) = y(x)## that solves the "almost-homogeneous" equation
y''(x) + 2 y'(x) + y(x) = \delta(x)
where ##\delta(x)## is the "Dirac Delta". Then, for ##x \geq 0## and RHS ##f(x)## on ##x \geq 0## (i.e., ##f(x) = 0 ## for ##x < 0##) a particular solution of ##y'' + 2 y' + y=f## is
y_p(x) = \int_{-\infty}^{\infty} G(x-s) f(s) \, ds = \int_{s=0}^{\infty} G(x-s) f(s) \, ds
You can find an appropriate ##G(x)## by noting that ##G''(x) + 2 G'(x) + G(x) = 0## for ##x < 0## and for ##x > 0##, which implies
G(x) = \begin{cases}<br />
A_1 x e^{-x} + B_1 e^{-x}, & x < 0 \\<br />
A_2 x e^{-x} + B_2 e^{-x}, & x > 0 <br />
\end{cases}
for constants ##A_1,A_2,B_1,B_2##. We need additional conditions: ##G(-0) = G(+0)## (continuity of ##G## at x=0) and ##G'(+0) - G'(-0) = 1## (jump condition on first derivative at x=0). Usually we impose two additional boundary conditions (at ##\pm \infty## for example) in order to get four equations in the four unknowns ##A_1,B_1,A_2,B_2##. For example, if we want ##G(x)## to either remain bounded or have moderate growth at large ##|x|## we can take ##A_1 = B_1 = 0##.