Dick
Science Advisor
Homework Helper
- 26,254
- 623
arl146 said:Yea there's only 2 examples and they don't have any x's involved like mine. The book really doesn't show good examples in my opinion for reasons like that. The one examples is "test the series summation ((-1)^n * n^3)/(3^n) for absolute convergence." and all they have to do is do the ratio test, in which they get the limit equal to 1/3 which is obviously less than 1. The other examples is the same thing!
Anyways, the a sub n+1 part would equal x^(2(n+1)+1) on top so just x^(2n+3) and 3*(2(n+1)+1)*(9^n+1) on bottom. And that is multiplied times the a sub n part which is 3*(2n+1)*(9n) on top and x^(2n+1) on bottom. Sorry I can't throw this stuff all together in a better way, still on my phone. I simplified all that to ((x^2)*(2n+1))/(9*(2n+3)) and that's how I got my first part I gave you
Ok, so if you get x^2/9 for the limiting ratio, then what values of x will give you a convergent series?