Find a vector perpendicular to another vector

AI Thread Summary
To find a vector perpendicular to L = 4i + 3j + k, the equation L - αs must satisfy the condition that its dot product with L equals zero. The dot product formula indicates that V · L = 0 when V is perpendicular to L. The discussion clarifies that using the cross product is unnecessary for this problem, as the focus should be on calculating V and setting the dot product to zero. The key takeaway is to solve for the scalar α by applying the dot product condition. Understanding the relationship between vector operations and their geometric interpretations is crucial for solving such problems.
ch33zer
Messages
2
Reaction score
0

Homework Statement



Consider the two vectors:
L = 4 i + 3 j + k
and
s = 6 i + 6 j + 8 k
Find the value of the scalar α such that the vector
L - αs
is perpendicular to L.

Homework Equations



Dot Product:
A \bullet B = |A||B| cos(theta)
A \bullet B = AxBx i + AyBy j + AzBz k
A \bullet A = (Ax^2 + Ay ^2 + Az^2)^.5 (Wouldn't let me do sub and sup in sqrt)

Cross Product
A x B = |A||B| sin(theta)

The Attempt at a Solution



I thought that I could do AxB and set that equal to |A||B| cos(theta) but when I did that everything just canceled out. I am really confused about multiplying a vector by a scalar and how that changes orientation etc.

Any help appreciated!
 
Last edited:
Physics news on Phys.org
AXB is AB sin(theta)
 
First, AxB is not ABsin(θ). That is a statement about magnitudes:

|A x B| = |A||B| sin(θ)

although it is pretty much irrelevant to the question.

Calculate V = L - as and use the property that V is perpendicular to L if V · L = 0.
 
Thanks. Got it.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top