MHB Find: abc + abd + acd + bcd = ?

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion revolves around solving the equation abc + abd + acd + bcd given the conditions a + b + c + d = 0 and a^3 + b^3 + c^3 + d^3 = 5. Participants are attempting to derive the value of the expression using algebraic identities and properties of symmetric sums. Various methods and approaches are shared, with some users providing detailed calculations and reasoning. The conversation highlights the complexity of the problem and the collaborative effort to arrive at a solution. Ultimately, the goal is to find the value of the expression based on the provided equations.
Albert1
Messages
1,221
Reaction score
0
$a+b+c+d=0$

$a^3+b^3+c^3+d^3=5$

$find: abc+abd+acd+bcd=?$
 
Mathematics news on Phys.org
Re: find: abc+abd+acd+bcd=?

My solution:

$\begin{align*} (a+b+c+d)^3&=((a+b)+(c+d))^3\\&=(a+b)^3+3(a+b)(c+d)(a+b+c+d)+(c+d)^3\\&= a^3+3ab(a+b)+b^3+3(a+b)(c+d)(0)+c^3+3cd(c+d)+d^3\\&=a^3+b^3+c^3+d^3+3(ab(a+b)+cd(c+d)) \end{align*}$

$\therefore 0^3=5+3(ab(a+b)+cd(c+d))\;\;\;\rightarrow ab(a+b)+cd(c+d)=-\dfrac{5}{3}$

Notice that

$\begin{align*} abc+abd+acd+bcd&=ab(c+d)+cd(a+b)\\&=ab(-a-b)+cd(-c-d)\\&=-(ab(a+b)+cd(c+d)) \end{align*}$

Therefore we get

$\begin{align*} abc+abd+acd+bcd&=-(ab(a+b)+cd(c+d))\\&=-(-\dfrac{5}{3})=\dfrac{5}{3} \end{align*}$
 
Re: find: abc+abd+acd+bcd=?

my solution :
let $a+b=x---(1),\,\,c+d=-x---(2)$
$(1)^3+(2)^3=a^3+b^3+c^3+d^3+3a^2b+3ab^2+3c^2d+3cd^2=0$
$5+3ab(a+b)+3cd(c+d)=5+3abx-3cdx=0$
$5=3(cdx-abx)---(3)$
$abc+abd+acd+bcd=ab(c+d)+cd(a+b)=cdx-abx=\dfrac{5}{3}---from(3)$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K