MHB Find: abc + abd + acd + bcd = ?

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion revolves around solving the equation abc + abd + acd + bcd given the conditions a + b + c + d = 0 and a^3 + b^3 + c^3 + d^3 = 5. Participants are attempting to derive the value of the expression using algebraic identities and properties of symmetric sums. Various methods and approaches are shared, with some users providing detailed calculations and reasoning. The conversation highlights the complexity of the problem and the collaborative effort to arrive at a solution. Ultimately, the goal is to find the value of the expression based on the provided equations.
Albert1
Messages
1,221
Reaction score
0
$a+b+c+d=0$

$a^3+b^3+c^3+d^3=5$

$find: abc+abd+acd+bcd=?$
 
Mathematics news on Phys.org
Re: find: abc+abd+acd+bcd=?

My solution:

$\begin{align*} (a+b+c+d)^3&=((a+b)+(c+d))^3\\&=(a+b)^3+3(a+b)(c+d)(a+b+c+d)+(c+d)^3\\&= a^3+3ab(a+b)+b^3+3(a+b)(c+d)(0)+c^3+3cd(c+d)+d^3\\&=a^3+b^3+c^3+d^3+3(ab(a+b)+cd(c+d)) \end{align*}$

$\therefore 0^3=5+3(ab(a+b)+cd(c+d))\;\;\;\rightarrow ab(a+b)+cd(c+d)=-\dfrac{5}{3}$

Notice that

$\begin{align*} abc+abd+acd+bcd&=ab(c+d)+cd(a+b)\\&=ab(-a-b)+cd(-c-d)\\&=-(ab(a+b)+cd(c+d)) \end{align*}$

Therefore we get

$\begin{align*} abc+abd+acd+bcd&=-(ab(a+b)+cd(c+d))\\&=-(-\dfrac{5}{3})=\dfrac{5}{3} \end{align*}$
 
Re: find: abc+abd+acd+bcd=?

my solution :
let $a+b=x---(1),\,\,c+d=-x---(2)$
$(1)^3+(2)^3=a^3+b^3+c^3+d^3+3a^2b+3ab^2+3c^2d+3cd^2=0$
$5+3ab(a+b)+3cd(c+d)=5+3abx-3cdx=0$
$5=3(cdx-abx)---(3)$
$abc+abd+acd+bcd=ab(c+d)+cd(a+b)=cdx-abx=\dfrac{5}{3}---from(3)$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K