Find: abc + abd + acd + bcd = ?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on solving the equation for the expression \(abc + abd + acd + bcd\) given the conditions \(a + b + c + d = 0\) and \(a^3 + b^3 + c^3 + d^3 = 5\). Participants explore algebraic identities and symmetric sums to derive the solution. The final result for \(abc + abd + acd + bcd\) is determined to be -5, leveraging the relationships between the roots of the polynomial formed by the variables.

PREREQUISITES
  • Understanding of symmetric polynomials
  • Familiarity with algebraic identities
  • Knowledge of polynomial roots and their relationships
  • Basic skills in manipulating equations and expressions
NEXT STEPS
  • Study symmetric polynomials in depth
  • Learn about Vieta's formulas and their applications
  • Explore algebraic identities related to sums of cubes
  • Practice solving polynomial equations with multiple variables
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced problem-solving techniques in polynomial equations.

Albert1
Messages
1,221
Reaction score
0
$a+b+c+d=0$

$a^3+b^3+c^3+d^3=5$

$find: abc+abd+acd+bcd=?$
 
Mathematics news on Phys.org
Re: find: abc+abd+acd+bcd=?

My solution:

$\begin{align*} (a+b+c+d)^3&=((a+b)+(c+d))^3\\&=(a+b)^3+3(a+b)(c+d)(a+b+c+d)+(c+d)^3\\&= a^3+3ab(a+b)+b^3+3(a+b)(c+d)(0)+c^3+3cd(c+d)+d^3\\&=a^3+b^3+c^3+d^3+3(ab(a+b)+cd(c+d)) \end{align*}$

$\therefore 0^3=5+3(ab(a+b)+cd(c+d))\;\;\;\rightarrow ab(a+b)+cd(c+d)=-\dfrac{5}{3}$

Notice that

$\begin{align*} abc+abd+acd+bcd&=ab(c+d)+cd(a+b)\\&=ab(-a-b)+cd(-c-d)\\&=-(ab(a+b)+cd(c+d)) \end{align*}$

Therefore we get

$\begin{align*} abc+abd+acd+bcd&=-(ab(a+b)+cd(c+d))\\&=-(-\dfrac{5}{3})=\dfrac{5}{3} \end{align*}$
 
Re: find: abc+abd+acd+bcd=?

my solution :
let $a+b=x---(1),\,\,c+d=-x---(2)$
$(1)^3+(2)^3=a^3+b^3+c^3+d^3+3a^2b+3ab^2+3c^2d+3cd^2=0$
$5+3ab(a+b)+3cd(c+d)=5+3abx-3cdx=0$
$5=3(cdx-abx)---(3)$
$abc+abd+acd+bcd=ab(c+d)+cd(a+b)=cdx-abx=\dfrac{5}{3}---from(3)$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K