MHB Find: abc + abd + acd + bcd = ?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$a+b+c+d=0$

$a^3+b^3+c^3+d^3=5$

$find: abc+abd+acd+bcd=?$
 
Mathematics news on Phys.org
Re: find: abc+abd+acd+bcd=?

My solution:

$\begin{align*} (a+b+c+d)^3&=((a+b)+(c+d))^3\\&=(a+b)^3+3(a+b)(c+d)(a+b+c+d)+(c+d)^3\\&= a^3+3ab(a+b)+b^3+3(a+b)(c+d)(0)+c^3+3cd(c+d)+d^3\\&=a^3+b^3+c^3+d^3+3(ab(a+b)+cd(c+d)) \end{align*}$

$\therefore 0^3=5+3(ab(a+b)+cd(c+d))\;\;\;\rightarrow ab(a+b)+cd(c+d)=-\dfrac{5}{3}$

Notice that

$\begin{align*} abc+abd+acd+bcd&=ab(c+d)+cd(a+b)\\&=ab(-a-b)+cd(-c-d)\\&=-(ab(a+b)+cd(c+d)) \end{align*}$

Therefore we get

$\begin{align*} abc+abd+acd+bcd&=-(ab(a+b)+cd(c+d))\\&=-(-\dfrac{5}{3})=\dfrac{5}{3} \end{align*}$
 
Re: find: abc+abd+acd+bcd=?

my solution :
let $a+b=x---(1),\,\,c+d=-x---(2)$
$(1)^3+(2)^3=a^3+b^3+c^3+d^3+3a^2b+3ab^2+3c^2d+3cd^2=0$
$5+3ab(a+b)+3cd(c+d)=5+3abx-3cdx=0$
$5=3(cdx-abx)---(3)$
$abc+abd+acd+bcd=ab(c+d)+cd(a+b)=cdx-abx=\dfrac{5}{3}---from(3)$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top