MHB Find all the zero divisors in a ring

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Ring Zero
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :D
I am given the following exercise:Find all the zero divisors in the ring $\mathbb{Z}_{20}$.
For each zero divisor $[a]$,find an element $ \neq [0]$ such that $[a]=[0]$.
That's what I did..Could you tell me if it is right??
Zero divisors at the ring $\mathbb{Z}_{20}$: $\{ [2], [4], [5], [6], [8], [10], [12], [14], [15], [16], [18]\}$
The couples are:
$([2],[10]),([10],[2])$
$([4],[5]),([5],[4])$
$([4],[10]),([10],[4])$
$([4],[15]),([15],[4])$
$([5],[8]),([8],[5])$
$([5],[12]),([12],[5])$
$([5],[16]),([16],[5])$
$([6],[10]),([10],[6])$
$([8],[10]),([10],[8])$
$([8],[15]),([15],[8])$
$([10],[12]),([12],[10])$
$([10],[14]),([14],[10])$
$([10],[16]),([16],[10])$
$([10],[18]),([18],[10])$
$([12],[15]),([15],[12])$
$([14],[15]),([15],[14])$
$([15],[16]),([16],[15])$
 
Physics news on Phys.org
evinda said:
Hello! :D
I am given the following exercise:Find all the zero divisors in the ring $\mathbb{Z}_{20}$.
For each zero divisor $[a]$,find an element $ \neq [0]$ such that $[a]=[0]$.
That's what I did..Could you tell me if it is right??
Zero divisors at the ring $\mathbb{Z}_{20}$: $\{ [2], [4], [5], [6], [8], [10], [12], [14], [15], [16], [18]\}$
The couples are:
$([2],[10]),([10],[2])$
$([4],[5]),([5],[4])$
$([4],[10]),([10],[4])$
$([4],[15]),([15],[4])$
$([5],[8]),([8],[5])$
$([5],[12]),([12],[5])$
$([5],[16]),([16],[5])$
$([6],[10]),([10],[6])$
$([8],[10]),([10],[8])$
$([8],[15]),([15],[8])$
$([10],[12]),([12],[10])$
$([10],[14]),([14],[10])$
$([10],[16]),([16],[10])$
$([10],[18]),([18],[10])$
$([12],[15]),([15],[12])$
$([14],[15]),([15],[14])$
$([15],[16]),([16],[15])$


Yep. It is right! (Cool)
 
I like Serena said:
Yep. It is right! (Cool)

Great!Thanks a lot! (Giggle)
 
In fact, it is not hard to see that in $\Bbb Z_{20}$ we have:

$[k]$ is a zero divisor if and only if $\text{gcd}(k,20) > 1$.

We also have the following fact (which is not true for rings in general, but IS true for cyclic rings):

$[k]$ is a zero divisor, or $[k]$ is a unit, and never both.

This turns out to be very useful when examining properties of integers in general (often, we "reduce mod $n$" and then "lift" what we have learned in $\Bbb Z_n$ to $\Bbb Z$).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 55 ·
2
Replies
55
Views
6K
Replies
21
Views
1K
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K