MHB Find all the zero divisors in a ring

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Ring Zero
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :D
I am given the following exercise:Find all the zero divisors in the ring $\mathbb{Z}_{20}$.
For each zero divisor $[a]$,find an element $ \neq [0]$ such that $[a]=[0]$.
That's what I did..Could you tell me if it is right??
Zero divisors at the ring $\mathbb{Z}_{20}$: $\{ [2], [4], [5], [6], [8], [10], [12], [14], [15], [16], [18]\}$
The couples are:
$([2],[10]),([10],[2])$
$([4],[5]),([5],[4])$
$([4],[10]),([10],[4])$
$([4],[15]),([15],[4])$
$([5],[8]),([8],[5])$
$([5],[12]),([12],[5])$
$([5],[16]),([16],[5])$
$([6],[10]),([10],[6])$
$([8],[10]),([10],[8])$
$([8],[15]),([15],[8])$
$([10],[12]),([12],[10])$
$([10],[14]),([14],[10])$
$([10],[16]),([16],[10])$
$([10],[18]),([18],[10])$
$([12],[15]),([15],[12])$
$([14],[15]),([15],[14])$
$([15],[16]),([16],[15])$
 
Physics news on Phys.org
evinda said:
Hello! :D
I am given the following exercise:Find all the zero divisors in the ring $\mathbb{Z}_{20}$.
For each zero divisor $[a]$,find an element $ \neq [0]$ such that $[a]=[0]$.
That's what I did..Could you tell me if it is right??
Zero divisors at the ring $\mathbb{Z}_{20}$: $\{ [2], [4], [5], [6], [8], [10], [12], [14], [15], [16], [18]\}$
The couples are:
$([2],[10]),([10],[2])$
$([4],[5]),([5],[4])$
$([4],[10]),([10],[4])$
$([4],[15]),([15],[4])$
$([5],[8]),([8],[5])$
$([5],[12]),([12],[5])$
$([5],[16]),([16],[5])$
$([6],[10]),([10],[6])$
$([8],[10]),([10],[8])$
$([8],[15]),([15],[8])$
$([10],[12]),([12],[10])$
$([10],[14]),([14],[10])$
$([10],[16]),([16],[10])$
$([10],[18]),([18],[10])$
$([12],[15]),([15],[12])$
$([14],[15]),([15],[14])$
$([15],[16]),([16],[15])$


Yep. It is right! (Cool)
 
I like Serena said:
Yep. It is right! (Cool)

Great!Thanks a lot! (Giggle)
 
In fact, it is not hard to see that in $\Bbb Z_{20}$ we have:

$[k]$ is a zero divisor if and only if $\text{gcd}(k,20) > 1$.

We also have the following fact (which is not true for rings in general, but IS true for cyclic rings):

$[k]$ is a zero divisor, or $[k]$ is a unit, and never both.

This turns out to be very useful when examining properties of integers in general (often, we "reduce mod $n$" and then "lift" what we have learned in $\Bbb Z_n$ to $\Bbb Z$).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Back
Top