MHB What is the area of the quadrilateral?

  • Thread starter Thread starter Monokonos
  • Start date Start date
  • Tags Tags
    Area
AI Thread Summary
The quadrilateral KLMN is inscribed in a circle with center O, where KL measures 18 and LM measures 24, with KN equal to NM. The area of triangle KLM is calculated as 216, while triangle KNM, being isosceles with base KM as 30 and height ON as 15, has an area of 225. The total area of quadrilateral KLMN is thus the sum of the areas of both triangles, which equals 441. The use of the Pythagorean theorem and properties of inscribed angles were key in determining these areas. The discussion highlights the geometric relationships within the quadrilateral and the circle.
Monokonos
Messages
1
Reaction score
0
View attachment 7882
https://gyazo.com/55afe69c0f00bff85a3a9c53bd353b42

Sorry for the really poorly drawn and lit picture...

Basically this quadrilateral is drawn inside a circle whose middle point is O. Here is the info I was given

KL = 18
LM = 24
KN = NM

What I need to find out is the area of KLMN.

What I did there split the quadrilateral into 2 with a diameter. I found out the length of that with the pythagorean theorem. It was 30. So logically the area of that triangle is 24x18/2 = 225.

But how do I find out the volume of the second triangle? I know it's really simple but I just can't figure it out...
 

Attachments

  • 55afe69c0f00bff85a3a9c53bd353b42.jpg
    55afe69c0f00bff85a3a9c53bd353b42.jpg
    55.7 KB · Views: 150
Last edited by a moderator:
Mathematics news on Phys.org
If KM is a diameter, then triangle KNM is isosceles with base KM = 30 and height ON = 15 $\implies$ area of triangle KNM is 225.

triangle KLM is inscribed in a semicircle, therefore angle L is 90 degrees ...

area of triangle KLM is 216
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
4K
Replies
9
Views
11K
Back
Top