Find charge field within coaxial cables

AI Thread Summary
The discussion focuses on calculating the electric field E(r) for two coaxial cylinders, where the inner cylinder has a uniform charge per unit length λ and the outer cylinder, a conductor, has a charge of -2λ. The user is initially confused about how to express the enclosed charge in terms of the radius r, particularly for the region from 0 to a, and considers integrating to find E. After applying Gauss's law, they derive the expression E = λ/(2πrε₀), confirming the units are consistent. The conclusion affirms that the formula derived is correct and appropriately accounts for the coaxial configuration.
physninj
Messages
37
Reaction score
0

Homework Statement


two very long coaxial cylinders. Inner has radius a and is solid with charge per unit length of λ. Volume is also uniform but not defined by a parameter. Outer is hollow with inner radius b and outer radius c. Outer cylinder is a conductor with charge per unit length of -2λ. Find E(r) for all r in terms of given parameters. you can also view attached picture.


Homework Equations


∫E.dA=qenclosed0


The Attempt at a Solution


I'm hung up right away on what to do with the inner radius from 0->a I've got the left side of the equation I think, but I don't know how to get qenclosed in terms of r, if it needs to be. I expect to integrate on that part. Anywho here's where I'm at.


E2∏rh=(1/ε0)∫dq

I've got λ=dq/dh where h represents the length of the cable being considered. All the examples seem to use charge density rather than charge per unit length, using this gives me:

E2∏rh=(1/ε0)∫λdh which is not in terms of r. I suppose I could still integrate it and cancel h on both sides, let me know if that's wrong.

E2∏rh=(λh/ε0)→E2∏r=(λ/ε0)

E(r)=λ/(2∏r*ε0)

Is this wrong for any reason? It doesn't feel right to not use the radius on the right side.
 

Attachments

  • cylinders.JPG
    cylinders.JPG
    33.9 KB · Views: 482
Physics news on Phys.org
Let's consider the cable's length finite, L. The total charge of the inner cylinder would be Q = λL. Applying Gauss' theorem ∫E*dA = λL/ε°, since E is uniform and perpendicular to dA: E∫dA = λL/ε° <=> E(2πrL) = λL/ε° <=> E = λ/2πε°r.
The units on both sides are also ok, so your formula is right.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top