MHB Find Complex Conjugate of 1/(1+e^(ix))

AI Thread Summary
To find the complex conjugate of the expression 1/(1+e^(ix)), the first step is to replace all instances of i with -i, resulting in 1/(1+e^(-ix)). Rationalizing the denominator leads to the expression (1+e^(ix))/(2+2cos(x)), which differs slightly from the original poster's result. Another method involves multiplying by e^(ix/2) to achieve symmetry, yielding the final answer of 0.5 sec(x/2) e^(i(x/2)). The discussion emphasizes the importance of correctly manipulating complex numbers to derive accurate results.
nicodemus1
Messages
16
Reaction score
0
Good Day,

I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)).

I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)).

Any help will be greatly appreciated.

Thanks & Regards

P.S. Apologies for not using LATEX as it was formatting the expressions wrongly
 
Mathematics news on Phys.org
Well, the first step is to actually conjugate, which is simply to replace all $i$'s with $-i$'s:
$$ \frac{1}{1+e^{ix}} \to \frac{1}{1+e^{-ix}}.$$
Next, one thing we could do is to rationalize the denominator to make the result have a real number in the denominator:
$$ \frac{1}{1+e^{-ix}} \cdot \frac{1+e^{ix}}{1+e^{ix}}
=\frac{1+e^{ix}}{1+e^{ix}+e^{-ix}+1}=\frac{1+e^{ix}}{2+2 \cos(x)}.$$
That's slightly different from your result.

Another approach would be to create symmetry where there isn't any, by multiplying top and bottom by $e^{ix/2}$:
$$\frac{1}{1+e^{-ix}} \cdot \frac{e^{ix/2}}{e^{ix/2}}=\frac{e^{ix/2}}{e^{ix/2}+e^{-ix/2}}= \frac{e^{ix/2}}{2 \cos(x/2)},$$
which is where your book's answer comes from.
 
nicodemus said:
Good Day,

I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)).

I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)).

Any help will be greatly appreciated.

Thanks & Regards

P.S. Apologies for not using LATEX as it was formatting the expressions wrongly

I would lean towards trying to write your complex number in terms of its real and imaginary parts, then the conjugation is easy...

\displaystyle \begin{align*} \frac{1}{1 + e^{i\,x}} &= \frac{1}{1 + \cos{(x)} + i\sin{(x)}} \\ &= \frac{1 \left[ 1 + \cos{(x)} - i\sin{(x)} \right] }{\left[ 1 + \cos{(x)} + i\sin{(x)} \right] \left[ 1 + \cos{(x)} - i\sin{(x)} \right] } \\ &= \frac{1 + \cos{(x)} - i\sin{(x)} }{ \left[ 1 + \cos{(x)} \right] ^2 + \sin^2{(x)} } \\ &= \frac{1 + \cos{(x)} - i\sin{(x)}}{ 1 + 2\cos{(x)} + \cos^2{(x)} + \sin^2{(x)}} \\ &= \frac{1 + \cos{(x)} - i\sin{(x)} }{ 2 + 2\cos{(x)} } \\ &= \frac{1 + \cos{(x)}}{2\left[ 1 + \cos{(x)} \right] } - i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \\ &= \frac{1}{2} - i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \end{align*}

So the conjugate is \displaystyle \begin{align*} \frac{1}{2} + i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \end{align*}
 
Yes, it is quite simple actually. I used the approach to express the given complex number in x+iy but I made a careless mistake there.

Thank you very much for all your help and advice.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
6K
Replies
7
Views
3K
Replies
13
Views
2K
Back
Top