MHB Find Complex Conjugate of 1/(1+e^(ix))

AI Thread Summary
To find the complex conjugate of the expression 1/(1+e^(ix)), the first step is to replace all instances of i with -i, resulting in 1/(1+e^(-ix)). Rationalizing the denominator leads to the expression (1+e^(ix))/(2+2cos(x)), which differs slightly from the original poster's result. Another method involves multiplying by e^(ix/2) to achieve symmetry, yielding the final answer of 0.5 sec(x/2) e^(i(x/2)). The discussion emphasizes the importance of correctly manipulating complex numbers to derive accurate results.
nicodemus1
Messages
16
Reaction score
0
Good Day,

I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)).

I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)).

Any help will be greatly appreciated.

Thanks & Regards

P.S. Apologies for not using LATEX as it was formatting the expressions wrongly
 
Mathematics news on Phys.org
Well, the first step is to actually conjugate, which is simply to replace all $i$'s with $-i$'s:
$$ \frac{1}{1+e^{ix}} \to \frac{1}{1+e^{-ix}}.$$
Next, one thing we could do is to rationalize the denominator to make the result have a real number in the denominator:
$$ \frac{1}{1+e^{-ix}} \cdot \frac{1+e^{ix}}{1+e^{ix}}
=\frac{1+e^{ix}}{1+e^{ix}+e^{-ix}+1}=\frac{1+e^{ix}}{2+2 \cos(x)}.$$
That's slightly different from your result.

Another approach would be to create symmetry where there isn't any, by multiplying top and bottom by $e^{ix/2}$:
$$\frac{1}{1+e^{-ix}} \cdot \frac{e^{ix/2}}{e^{ix/2}}=\frac{e^{ix/2}}{e^{ix/2}+e^{-ix/2}}= \frac{e^{ix/2}}{2 \cos(x/2)},$$
which is where your book's answer comes from.
 
nicodemus said:
Good Day,

I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)).

I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)).

Any help will be greatly appreciated.

Thanks & Regards

P.S. Apologies for not using LATEX as it was formatting the expressions wrongly

I would lean towards trying to write your complex number in terms of its real and imaginary parts, then the conjugation is easy...

\displaystyle \begin{align*} \frac{1}{1 + e^{i\,x}} &= \frac{1}{1 + \cos{(x)} + i\sin{(x)}} \\ &= \frac{1 \left[ 1 + \cos{(x)} - i\sin{(x)} \right] }{\left[ 1 + \cos{(x)} + i\sin{(x)} \right] \left[ 1 + \cos{(x)} - i\sin{(x)} \right] } \\ &= \frac{1 + \cos{(x)} - i\sin{(x)} }{ \left[ 1 + \cos{(x)} \right] ^2 + \sin^2{(x)} } \\ &= \frac{1 + \cos{(x)} - i\sin{(x)}}{ 1 + 2\cos{(x)} + \cos^2{(x)} + \sin^2{(x)}} \\ &= \frac{1 + \cos{(x)} - i\sin{(x)} }{ 2 + 2\cos{(x)} } \\ &= \frac{1 + \cos{(x)}}{2\left[ 1 + \cos{(x)} \right] } - i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \\ &= \frac{1}{2} - i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \end{align*}

So the conjugate is \displaystyle \begin{align*} \frac{1}{2} + i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \end{align*}
 
Yes, it is quite simple actually. I used the approach to express the given complex number in x+iy but I made a careless mistake there.

Thank you very much for all your help and advice.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
6K
Replies
7
Views
3K
Replies
13
Views
2K
Back
Top