MHB Find Complex Conjugate of 1/(1+e^(ix))

nicodemus1
Messages
16
Reaction score
0
Good Day,

I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)).

I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)).

Any help will be greatly appreciated.

Thanks & Regards

P.S. Apologies for not using LATEX as it was formatting the expressions wrongly
 
Mathematics news on Phys.org
Well, the first step is to actually conjugate, which is simply to replace all $i$'s with $-i$'s:
$$ \frac{1}{1+e^{ix}} \to \frac{1}{1+e^{-ix}}.$$
Next, one thing we could do is to rationalize the denominator to make the result have a real number in the denominator:
$$ \frac{1}{1+e^{-ix}} \cdot \frac{1+e^{ix}}{1+e^{ix}}
=\frac{1+e^{ix}}{1+e^{ix}+e^{-ix}+1}=\frac{1+e^{ix}}{2+2 \cos(x)}.$$
That's slightly different from your result.

Another approach would be to create symmetry where there isn't any, by multiplying top and bottom by $e^{ix/2}$:
$$\frac{1}{1+e^{-ix}} \cdot \frac{e^{ix/2}}{e^{ix/2}}=\frac{e^{ix/2}}{e^{ix/2}+e^{-ix/2}}= \frac{e^{ix/2}}{2 \cos(x/2)},$$
which is where your book's answer comes from.
 
nicodemus said:
Good Day,

I would like to know how to find the complex conjugate of the complex number 1/(1+e^(ix)).

I got (1+e^(-(ix)))/(2+2 cos x) but the solution is 0.5 sec (x/2) e^(i(x/2)).

Any help will be greatly appreciated.

Thanks & Regards

P.S. Apologies for not using LATEX as it was formatting the expressions wrongly

I would lean towards trying to write your complex number in terms of its real and imaginary parts, then the conjugation is easy...

\displaystyle \begin{align*} \frac{1}{1 + e^{i\,x}} &= \frac{1}{1 + \cos{(x)} + i\sin{(x)}} \\ &= \frac{1 \left[ 1 + \cos{(x)} - i\sin{(x)} \right] }{\left[ 1 + \cos{(x)} + i\sin{(x)} \right] \left[ 1 + \cos{(x)} - i\sin{(x)} \right] } \\ &= \frac{1 + \cos{(x)} - i\sin{(x)} }{ \left[ 1 + \cos{(x)} \right] ^2 + \sin^2{(x)} } \\ &= \frac{1 + \cos{(x)} - i\sin{(x)}}{ 1 + 2\cos{(x)} + \cos^2{(x)} + \sin^2{(x)}} \\ &= \frac{1 + \cos{(x)} - i\sin{(x)} }{ 2 + 2\cos{(x)} } \\ &= \frac{1 + \cos{(x)}}{2\left[ 1 + \cos{(x)} \right] } - i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \\ &= \frac{1}{2} - i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \end{align*}

So the conjugate is \displaystyle \begin{align*} \frac{1}{2} + i\left\{ \frac{\sin{(x)}}{2 \left[ 1 + \cos{(x)} \right] } \right\} \end{align*}
 
Yes, it is quite simple actually. I used the approach to express the given complex number in x+iy but I made a careless mistake there.

Thank you very much for all your help and advice.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top