Find Derivative of f(x) = x/(x+c/x): Step-by-Step

  • Thread starter Thread starter nothing123
  • Start date Start date
  • Tags Tags
    Derivative
nothing123
Messages
97
Reaction score
0
find the derivative of the following:
f(x) = x/(x+c/x)

through simplication, i got:
x(x+cx^-1)^-1
=x(x^-1 + c^-1*x)
=1+1/c*x^2

taking the derivative,
-c^-2*x^2 + c^-1*2x

its wrong though so where did i go wrong?
 
Physics news on Phys.org
nothing123 said:
through simplication, i got:
x(x+cx^-1)^-1
=x(x^-1 + c^-1*x)
=1+1/c*x^2

That's not right. (x+y)-1 is not the same as x-1 + y-1.

Without simplifying the original expression you could have used the quotient rule to find the derivative, OR you could differentiate x(x+cx^-1)^-1 using the product rule.
 
I would be inclined to multiply both numerator and denominator of the function by x:
f(x)= \frac{x}{x+ \frac{c}{x}}= \frac{x^2}{x^2+ c}
for all x except 0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top