MHB *find eq of perpendicular line so that the area of the triangle is 8

Click For Summary
To find the equation of a perpendicular line that encloses a triangle with an area of 8 alongside the line y=4x-2, the base and height of the triangle must be calculated. The base is expressed as B=(4x-2)+2+(1/4)x, simplifying to B=(17/4)h, where h is the height. The area formula, Area=(1/2)BH, leads to the equation (b+2)(4b+2)/30=8 for calculating b. The intersection of the two line equations is used to determine the height, H=(4b+2)/15. Ultimately, there are two possible triangles that satisfy the conditions of the problem.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 3268
for the line y=4x-2 there is one perpendicular line of which will enclose a triangle on the lines and the values of the y-axis whose area is 8. What is the equation of this line?

Well, I chose the x value to be the height of the triangle and that would make the base $$B=(4x-2)+2+\frac{1}{4}x$$ or just $B=\frac{17}{4}h$ if $h=$ the $x$ value.

just seeing if I am going the right direction with this seem more complicated than is should be. got to be a slam dunk method...

I got a weird answer for $h=\frac{8}{\sqrt{17}}$ and $b=2\sqrt{17}$
 
Mathematics news on Phys.org
karush said:
View attachment 3268
for the line y=4x-2 there is one perpendicular line of which will enclose a triangle on the lines and the values of the y-axis whose area is 8. What is the equation of this line?

Well, I chose the x value to be the height of the triangle and that would make the base $$B=(4x-2)+2+\frac{1}{4}x$$ or just $B=\frac{17}{4}h$ if $h=$ the $x$ value.

just seeing if I am going the right direction with this seem more complicated than is should be. got to be a slam dunk method...

I got a weird answer for $h=\frac{8}{\sqrt{17}}$ and $b=2\sqrt{17}$

The area of a triangle is given from the formula $$\text{ Area }=\frac{1}{2} B H$$

You will find the part of the basis $B$ that is over the $x$-axis, by setting at the equation $y=\frac{x}{4}+b$, $x=0$. So, it is equal to $b$.
The part of $B$ under the $x$-axis is equal to $2$.

Therefore, $B=b+2$.

You will find the height $H$ by finding the intersection between the two line equations:
$$\frac{x}{4}+b=4x-2 \Rightarrow x=\frac{4b+2}{15}$$

Therefore, $H=\frac{4b+2}{15}$.

So, to calculate $b$ we have to solve the following:

$$B \cdot H=8 \Rightarrow \frac{b+2}{2} \frac{4b+2}{15}=8$$
 
Karush,
Actually, there are 2 such triangles.
r0ozlf.png
 
ok I posted this problem also on Linkedin since it had over 1000 views
but there was an image with this problem which was from a SAT pdf
but I couldn't find it but apparently the image is not necessary to solve it
Anyway
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K