IHazAName
- 2
- 0
Homework Statement
a. u(x,y)=(x+2)2-y2, v(x,y)=2(x+2)y
b. u(x,y)=cosxcoshy, v(x,y)=-sinxsinhy
c. u(x,y)=(x2+y2+y)/(x2+y2), v(x,y)=x/(x2+y2)
d. u(x,y)=eycosx, v(x,y)=eysinx
The Attempt at a Solution
a. f(x+iy)=(x+2)2-y2+i2(x+2)y
=(x+2+iy)(x+2+iy)
f(z)=(z+2)2
b. f(x-iy)=cosxcoshy-isinxsinhy
Am I allowed to answer this question as f(\bar{z})=cos\bar{z}?
c.f(x-iy)=((x2+y2+y)/(x2+y2))-i(x/(x2+y2))
=((x-iy-i)(x+iy))/((x-iy)(x+iy))
=(x-iy-i)/(x-iy)
Same as b... f(\bar{z})=(\bar{z}-i)/\bar{z}?
d. du/dx != dv/dy, fails Cauchy-Reimann?
Edit: How do I go from x-iy to x+iy? This escapes me. :(
Last edited: