Find field yielding the potential ln(1/r)

  • Thread starter Thread starter timn
  • Start date Start date
  • Tags Tags
    Field Potential
timn
Messages
19
Reaction score
0
Dear Physics Forums,

Homework Statement



Given the potential

\Phi(\bar{r}) = \Phi_0\ln{\left(\frac{r_0}{r}\right)}

calculate the electric field strength.

Homework Equations



- \nabla \Phi = \bar{E}

The Attempt at a Solution



Due to the symmetry of the problem, consider the position vector \bar{r} as a vector in spherical coordinates.

\bar{E}(\bar{r}) = -\nabla \Phi(\bar{r})

The potential depends only on the radial component, so the other terms of the gradient vanish.

\bar{E}(\bar{r}) = - \Phi_0 \frac{\partial}{\partial r} \ln{\frac{r_0}{r}} \hat{r}<br /> = \Phi_0 \frac{1}{r} \hat{r}

where \hat{r} denotes the normalised radial base vector.

The answer is supposed to be \Phi_0 \frac{1}{r^2} \hat{r}, with a square in the denominator. What did I do wrong?
 
Physics news on Phys.org
"rhat" in the answer means the position vector, independent of the coordinate system.

ehild
 
Aha! Thank you, ehild.

Sorry about copying the answer wrong.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top