Find Integral of sqrt(e^(9x)) - Incorrect Solution Explained

  • Thread starter Thread starter 7yler
  • Start date Start date
  • Tags Tags
    Integral
7yler
Messages
31
Reaction score
0
Find the integral.
\int\sqrt{e^{9x}} dx

I figured that \int\sqrt{e^{9x}} dx is equal to \int(e^{9x/2}) dx so the integral should simply be e^{9x/2}+C

Why isn't this correct?
 
Physics news on Phys.org
Take the derivative of your answer and you'll see what you left out. Almost got it.
 
2/9! Thanks a ton.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
3
Views
2K
Replies
5
Views
1K
Replies
105
Views
4K
Replies
22
Views
3K
Replies
5
Views
1K
Replies
8
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Back
Top