# Find lim using L'Hopital Rule

#### Kreizhn

1. Homework Statement
Find
$$\lim_{x\to0} \frac{\arcsin(x)-x}{x^3}$$

3. The Attempt at a Solution
This is obviously an indeterminate form, so we apply L'hopital's rule to get

$$\lim_{x\to0} \frac{\frac1{\sqrt{1-x^2}} - 1 }{ 3x^3}$$
which is again an indeterminate form so we apply it again to get
$$\lim_{x\to0} \frac{(1-x^2)^{-\frac32}}6 [/itex] from which the solution is obviously $\frac16$. However, this is my question. After the first application of L'Hopital, we could have simplified [tex] \lim_{x\to0} \frac{\frac1{\sqrt{1-x^2}} - 1 }{ 3x^3} = \lim_{x\to0} \frac{1-\sqrt{1-x^2}}{3x^2\sqrt{1-x^2}}$$
This is no longer an indeterminate form and would suggest that the limit does not exist. Is there any justification for why this can't be done? Possibly, do we know that either: 1) This simplification is not permitted after applying L'Hopital or 2) We know the limit exists and is finite and so are forced to apply L'Hopital yet again?

Related Calculus and Beyond Homework Help News on Phys.org

#### Dick

Science Advisor
Homework Helper
Why do you think lim x->0 of (1-sqrt(1-x^2))/(3*x^2*sqrt(1-x^2)) isn't indeterminant? It looks like 0/0 to me.

#### Kreizhn

Haha, yes. The ability to subtract has apparently escaped me. Thanks

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving