Find Limit of f(x) as x Approaches 0: Solutions Explained

  • Thread starter Thread starter lkh1986
  • Start date Start date
  • Tags Tags
    Limit
lkh1986
Messages
96
Reaction score
0
Find limit of f(x) when x approaches 0.

Given that f(x) is (1/x^3){(1+tanx)^0.5 - (1+sinx)^0.5}

The given answer is 0.25, but can somebody show me the solutions? I try the conjugate, and nothing works. Then I try to substitute t=(1+tanx)^0.5 and others, can't work, too.
 
Physics news on Phys.org
If you multiply numerator and denominator with the complement expression, you get after simplifying:

\frac{{\frac{{\tan x - \sin x}}{{x^3 }}}}{{\sqrt {1 + \tan x} + \sqrt {1 + \sin x} }}

Replacing sin(x) and tan(x) by the first terms of their Taylor series arround 0 so that the difference isn't 0, is x³/2. So you get:

<br /> \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\tan x - \sin x}}{{x^3 }}}}{{\sqrt {1 + \tan x} + \sqrt {1 + \sin x} }} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{2}}}{{\sqrt {1 + \tan x} + \sqrt {1 + \sin x} }}<br />
 
lkh1986 said:
Find limit of f(x) when x approaches 0.

Given that f(x) is (1/x^3){(1+tanx)^0.5 - (1+sinx)^0.5}
Wait a minute, what is your f(x)?
Is it
\frac {\sqrt{1+tanx} - \sqrt{1+sinx}}{x^3}?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top