Dustinsfl
- 2,217
- 5
Let x=<br />
\begin{array}{cc|l}<br />
1 \\<br />
1 \\<br />
7 \<br />
\end{array}<br />
write x as a linear combination of u using theorem.
u1=<br /> \begin{array}{cc|l}<br /> 1/{3\sqrt{2}} \\<br /> 1/{3\sqrt{2}} \\<br /> -4/{3\sqrt{2}} \<br /> \end{array}<br />
u2=<br /> \begin{array}{cc|l}<br /> 2/3 \\<br /> 2/3 \\<br /> 1/3 \<br /> \end{array}<br />
u3=<br /> \begin{array}{cc|l}<br /> 1/\sqrt{2} \\<br /> -1/\sqrt{2} \\<br /> 0 \<br /> \end{array}<br />
v=\sum^n_{i=1} c<sub>i</sub><b>u</b><sub>i</sub>
I first did the rref of u and then wrote x in terms of the linear combination but it isn't the same as using the sum which I am not sure how to do.
write x as a linear combination of u using theorem.
u1=<br /> \begin{array}{cc|l}<br /> 1/{3\sqrt{2}} \\<br /> 1/{3\sqrt{2}} \\<br /> -4/{3\sqrt{2}} \<br /> \end{array}<br />
u2=<br /> \begin{array}{cc|l}<br /> 2/3 \\<br /> 2/3 \\<br /> 1/3 \<br /> \end{array}<br />
u3=<br /> \begin{array}{cc|l}<br /> 1/\sqrt{2} \\<br /> -1/\sqrt{2} \\<br /> 0 \<br /> \end{array}<br />
v=\sum^n_{i=1} c<sub>i</sub><b>u</b><sub>i</sub>
I first did the rref of u and then wrote x in terms of the linear combination but it isn't the same as using the sum which I am not sure how to do.
Last edited: