Find out if nxn matrix is diagonalisable based on det(XI-A)

  • Thread starter Thread starter Fairy111
  • Start date Start date
  • Tags Tags
    Matrix
Fairy111
Messages
72
Reaction score
0

Homework Statement



If you need to check whether an nxn matrix, A, is diagonalisable or not, do you just find out what det(XI-A) is, and then if X has n distinct values it is diagonalisable, otherwise it's not.



Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org


Consider the identity matrix...
 


The identity matrix has only one distinct solution, 1, but it is diagonalisable...

So how do you go about checking whether or not a matrix is diagonalisable or not?
 


A nxn square matrix is diagonizable if it has n linearly independent eigenvectors. Having n distinct eigenvalues is sufficient but not necessary for diagonalizability.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top