Find sqrt( 2 + sqrt( 2 + sqrt( 2 + )))

  • Thread starter Thread starter sara_87
  • Start date Start date
sara_87
Messages
748
Reaction score
0
Find the limit as n tends to infinity;

sqrt(2), sqrt(2+sqrt(2)), sqrt(2+sqrt(2+sqrt(2))), etc... n times
 
Physics news on Phys.org


If an is the nth value, then a_{n+1}= \sqrt{2+ a_n}

IF the sequence {an} converges (you will need to prove that, perhaps by proving that it is an increasing sequence and has an upper bound), call the limit A.
Then we must have \lim_{n\rightarrow \infty}a_{n+1}= \sqrt{2+ \lim_{n\rightarrow \infty}a_n} so A= \sqrt{2+ A}.
 


Thank you very much.
All is clear.
 


Sorry i have a small problem

How come A=sqrt(2+A) ?
A=limit of an not a(n+1)
so Limit a(n+1)=sqrt(2+A)
No?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top