First off, you've labeled things incorrectly. The weights may well be 130N and 45N, but you've labeled them as masses. I know this seems trivial, especially if you understand the difference, but those small inconsistencies can lead to major problems later on.
I take it you're asking how to solve a problem where you have to find the angle? The trouble is that you haven't provided enough information to do so. If we knew the acceleration of the blocks, then we could make a start - otherwise, the system is underdetermined.
Some general hints: in problems like this, it's always a good idea to start with a free-body diagram of each of the masses. List every force acting on each mass, including the direction. Decide on a convenient set of axes and resolve the forces into their appropriate components.
For instance, the forces on your block 1 will be weight (straight down), the normal force (perpendicular to the plane, upwards), friction (parallel to the plane, towards the bottom) and the tension in the rope (parallel to the plane, towards the top). Given this, the best axes are probably parallel to and normal to the plane. For your block 2, the only forces are the weight (down) and the tension in the rope (up), so there's no resolution necessary.
After that, it's a matter of resolving everything. Remember that the net force on the object is both the vector sum of the forces acting and the product of mass and acceleration. If you know the acceleration, then you can figure the net force pretty easily. From there, it's a relatively simple matter to determine the angle necessary to give you that net force.
Does that help?