Find the derivative using Logaritmic Differentiation

superjen
Messages
26
Reaction score
0
y = (sinx)2x

LNy = 2xLN(sinx) + (1 over sinx)(cosx)(2x)

Answer

y' = (sinx)2x [2cosx over sinx + 2xcotx]


and

y = (cosx)cosx

i did it the same way as above
Answer i got was

y' = (cosx)cosx [ (-sinx)(cosx) + sinx]

am i anywhere right?
 
Physics news on Phys.org
superjen said:
y = (sinx)2x

LNy = 2xLN(sinx) + (1 over sinx)(cosx)(2x)
How comes the right term??

ln(y) = 2xln(sinx)
~~\frac{y'}{y} = 2(ln(sinx)+xcotx)
~~y' = 2sinx^2x(ln(sinx)+xcotx)

y' = (cosx)cosx [ (-sinx)(cosx) + sinx]
am i anywhere right?

Nope. Please try again. There should be a ln() in your answer.
 
for the second one , would this be right?

y' = (cosx)cosx[(-sinx)(LN(sinx) - sinx]
 
superjen said:
for the second one , would this be right?

y' = (cosx)cosx[(-sinx)(LN(sinx) - sinx]

Yes, it would.
 
superjen said:
for the second one , would this be right?

y' = (cosx)cosx[(-sinx)(LN(sinx) - sinx]

I don't think so. I think it should be ln(cosx) instead of ln(sinx). Typo?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top