erok81
- 454
- 0
Homework Statement
Find the Fourier integral representation of the given function.
<br /> f(x)= \left\{\begin{array}{ll}<br /> 1-\cos(x) & \mbox{ if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\<br /> 0 & \mbox{ otherwise}<br /> \end{array}\right.<br />
On a side note...how does one properly enter the above using LaTeX?
Homework Equations
f(x)=\int_{0}^{\infty} A(\omega)cos(\omega x)~+~B(\omega)sin(\omega x)
Where
A(\omega)=\frac{1}{\pi} \int_{- \infty}^{\infty}f(t)cos(\omega t) ~dt
B(\omega)=\frac{1}{\pi} \int_{- \infty}^{\infty}f(t)sin(\omega t) ~dt
The Attempt at a Solution
So first I start solving for A(ω)
A(\omega)=\frac{1}{\pi} \int_{- \infty}^{\infty}f(t)cos(\omega t) ~dt
A(\omega)=\frac{1}{\pi} \int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}(1-cos(x))cos(\omega t) ~dt
I broke this up into two different integrals.
The first was easy...let's call this D where A(ω)=D-E. Since (1-cos(t))cos(ωt) = cos(ωt)-cos(t)cos(ωt)
D=\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}cos(\omega t)~dt~=~\frac{2}{\omega}sin( \frac{1}{2}\omega \pi)Next up is E...the one I am having trouble with.
E=\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}cos(\omega t)cos(t)~dt
I have three different scenarios with the above integral Or at least it looks that way. When ω=0,1,and ω>1
How do I represent these in my final answer for A(ω)?
Last edited: