Find the limit using Riemann sum

devinaxxx

Homework Statement



i want to find limit value using riemann sum
\lim_{n\to\infty}\sum_{i = 1}^{2n} f(a+\frac{(b-a)k}{n})\cdot\frac{(b-a)}{n}= \int_a^b f(x)dx<br>
question : <br>
\lim_{h \to \infty} =\frac{1}{2n+1}+\frac{1}{2n+3}+...+\frac{1}{2n+(2n-1)}<br>

Homework Equations

The Attempt at a Solution


<br>
\lim_{h \to \infty}\sum_{k=1}^n \frac{1}{n}\frac{1}{2+(2k-1)\frac{1}{n}}
i try to isolate 1/n but i can't find way to make this become f(\frac{k}{n}) since k is stuck in 2k-1, can someone give me a hint? thanks
 
Physics news on Phys.org
devinaxxx said:

Homework Statement



i want to find limit value using riemann sum
\lim_{n\to\infty}\sum_{i = 1}^{2n} f(a+\frac{(b-a)k}{n})\cdot\frac{(b-a)}{n}= \int_a^b f(x)dx<br>
question : <br>
\lim_{h \to \infty} =\frac{1}{2n+1}+\frac{1}{2n+3}+...+\frac{1}{2n+(2n-1)}<br>

Homework Equations

The Attempt at a Solution


<br>
\lim_{h \to \infty}\sum_{k=1}^n \frac{1}{n}\frac{1}{2+(2k-1)\frac{1}{n}}
i try to isolate 1/n but i can't find way to make this become f(\frac{k}{n}) since k is stuck in 2k-1, can someone give me a hint? thanks

How different are
$$t_1(n,k) = \frac{1}{2+\frac{2k-1}{n}} \;\; \text{and} \;\; t_2(n,k) = \frac{1}{2 + \frac{2k}{n}} ? $$
Do ##\sum \frac{1}{n} t_1(n,k)## and ##\sum \frac{1}{n} t_2(n,k)## have the same large-##n## limits?
 
  • Like
Likes devinaxxx
Ray Vickson said:
How different are
$$t_1(n,k) = \frac{1}{2+\frac{2k-1}{n}} \;\; \text{and} \;\; t_2(n,k) = \frac{1}{2 + \frac{2k}{n}} ? $$
Do ##\sum \frac{1}{n} t_1(n,k)## and ##\sum \frac{1}{n} t_2(n,k)## have the same large-##n## limits?
thankou got it!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top