 #1
Ithilrandir
 82
 2
 Homework Statement:

The trigonometric parallax of sirius (i.e, the angle subtended at sirius by the radius of the earth's orbit) is 0.378 degrees arc. Using this and data in Fig. 32, deduce as best you can the mass M of the sirius system in terms of that of the sun, and
a) assuming that the orbital plane is perpendicular to the line of sight, and
b) allowing for the actual tilt of the orbit.
Is your value in part (b) above an upper or lower limit (or either)?
 Relevant Equations:
 ...
I'll be focusing on mainly trying to find a way to solve part a, as I don't actually know how to account for the tilt.
When they said degrees arc I assume they're just saying degrees, so I found the distance of Earth to sirius to be around 1.50 x 10^8 km(radius of the earth), because of the small angle subtended.
I also found the period to be around 50+ years, by looking at the graph over the years. After that I'm stuck. In order to find the mass, I still need to know the radius of orbit of sirius, but I don't know how to read the graph to find that.
When they said degrees arc I assume they're just saying degrees, so I found the distance of Earth to sirius to be around 1.50 x 10^8 km(radius of the earth), because of the small angle subtended.
I also found the period to be around 50+ years, by looking at the graph over the years. After that I'm stuck. In order to find the mass, I still need to know the radius of orbit of sirius, but I don't know how to read the graph to find that.
Attachments
Last edited: