Okay let us take a point (x1, y1) on the curve y2 = x-1, and another point, (x2, y2) on the curve x2 = y-1. Now, suppose that these two points represent the closest points on the two curves. We want to find the distance between them. Currently, we have four variables: x1, x2, y1 and y2; but we can reduce the number of variables. Since we know that the points must lie on their respective curves we can simply substitute one co-ordinate into the equation of the curve. For example, let us take the first point: (x1, y1). We know that since this point lies on the first curve it must satisfy the equation y2 = x-1. In other words, y12 = x1-1. Hence, x1 = y12+1. Therefore we can re-write the point (x1, y 1) in terms of y1 only: (y12+1, y1).
Do you now follow?