Find the radius of the middle circle

  • Thread starter Thread starter xcrunner448
  • Start date Start date
  • Tags Tags
    Circle Radius
AI Thread Summary
The problem involves finding the radius of a middle circle tangent to two lines and two other circles with known radii of 8 and 4. Initial attempts included using similar triangles, but the solution was ultimately derived by establishing equations based on the distances from the vertex to the circle centers. The radius of the middle circle was found to be 4*sqrt(2) through two methods: one using similar triangles and the other involving trigonometric functions of the angles formed by the tangent lines. Both methods confirmed that the radius of the middle circle is the geometric mean of the outer circles' radii. The final answer for the radius is 4*sqrt(2).
xcrunner448
Messages
12
Reaction score
0

Homework Statement



There are 3 circles, each tangent to 2 lines and to each other (as in the picture). The radius of the right (largest) circle is 8, and the radius of the left (smallest) circle is 4. What is the radius of the middle circle?


The Attempt at a Solution



I tried using similar triangles to solve the problem, using the right triangles formed by the bottom line, the radii of the circles, and the angle bisector (which goes through the centers of all of the circles). However, I could not find any relation that would give me an equation to find x. I also tried to somehow calculate the angle between the two lines, but that got really complicated. I am not sure what other method I could use to solve this, and any help would be appreciated.
 

Attachments

  • circle prob.JPG
    circle prob.JPG
    10.6 KB · Views: 705
Physics news on Phys.org
Can you show us? From the graph, we can at least see three equal ratios. Let the distance from the vertex to the first circle be y. Working on from there get the three equal ratios from which you should be able to get two equations. You can always eliminate y and solve for x.
 
Using similar triangles should get you the answer (hint: you have to solve two equations with two unknowns).
 
Ok I think I got it now. Using y as the distance from the vertex to the center of the first circle, I got y/4 = (4+x)/x and y-8-x = 4+x. From the second equation I got y=2x+12, and plugging that into the first equation I found that x=4*sqrt(2). I guess I just didn't see that when I first tried to solve it. Thank you!

In the meantime I think I solved it another way, although it is much more complex. After quite a bit of work I found that the angle between the two tangent lines for tangential circles of radii a and b (with b>a) is 2*arcsin((b-a)/(a+b)). I did this for each pair of circles (b=8, a=x and b=x, a=4) and set them equal to each other, giving 2*arcsin((8-x)/(8+x))=2*arcsin((x-4)/(x+4)), which led to the proportion (8-x)/(8+x)=(x-4)/(x+4). When I solved that I got x=4*sqrt(2), the same answer as above. It was a lot more work than the similar triangles method, but it worked. Also, I thought it was interesting that the radius of the middle circle is always the geometric mean of the radii of the two outer circles. (x=4*sqrt(2)=sqrt(32)=sqrt(4*8))
 
You can do it directly with the right triangles indicated on the figure I modified using your figure.
The hypotenuse of the red triangle is x+4, its vertical leg is x‒4 .
The hypotenuse of the blue triangle is x+8, its vertical leg is 8‒x .
 

Attachments

  • three_circles_1.jpg
    three_circles_1.jpg
    9 KB · Views: 621
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top