Find the solution of this ln equation

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Ln
transgalactic
Messages
1,386
Reaction score
0
find the solution of this ln equation:
ax=lnx

i tried:
<br /> e^{(ax)}=x<br />
<br /> e^{(ax)}-x=0<br />

what to do next??
i thought of building a taylor series around 0 for ln
but ln(0) is undefined

??
 
Last edited:
Physics news on Phys.org
I'm not entirely sure, but I think such equations must be solved with a numerical method, such as Newton-Rhapson.
 
When there is any solution there are two I think.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top