Find the solution to the initial value problem

mad_monkey_j
Messages
33
Reaction score
0

Homework Statement


Find the solution to the initial value problem
dy/dx - y = e^3x
y(0) = 3

Homework Equations


e^∫p(x)

The Attempt at a Solution


Do I treat p(x) = -1?
I(x) = e^∫-1 = e^-x
e^-x(dy/dx) - ye^-x = e^3x . e^-x
e^-x(dy/dx) - e^-x . y = e^2x
e^-x . y = ∫e^2x
y = (2e^2x + c)/(e^-x)
y = C+2e^3x?
 
Physics news on Phys.org
mad_monkey_j said:

Homework Statement


Find the solution to the initial value problem
dy/dx - y = e^3x
y(0) = 3

Homework Equations


e^∫p(x)

The Attempt at a Solution


Do I treat p(x) = -1?
I(x) = e^∫-1 = e^-x
e^-x(dy/dx) - ye^-x = e^3x . e^-x
e^-x(dy/dx) - e^-x . y = e^2x
e^-x . y = ∫e^2x
y = (2e^2x + c)/(e^-x)
y = C+2e^3x?
Yes, in this case p(x)=-1. However, you're answer isn't correct as it doesn't satisfy the initial value problem. You have made a little slit in the second to last line of your working.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top