Find Wronskian of {e^(x)*cos(sqrt(x)), e^(x)*sin(sqrt(x))} Homework

  • Thread starter Thread starter Math10
  • Start date Start date
  • Tags Tags
    Wronskian
Math10
Messages
301
Reaction score
0

Homework Statement


Find the Wronskian of {e^(x)*cos(sqrt(x)), e^(x)*sin(sqrt(x))}.

Homework Equations


W(f, g)=fg'-gf'

The Attempt at a Solution


W(f, g)=(e^(x)*cos(sqrt(x)))(e^(x)*cos(sqrt(x))*1/(2x^1/2))-(e^(x)*sin(sqrt(x)))(-e^(x)*sin(sqrt(x))*1/(2x^1/2)+e^(x)*cos(sqrt(x)))
After simplifying this, I got (e^(2x)(1-2*sqrt(x)*sin(sqrt(x))*cos(sqrt(x)))/(2x^(1/2)). But the correct answer is e^(2x)/(2x^1/2).
 
Physics news on Phys.org
It would help a lot if you edited your post to use latex for your math expressions.
 
I agree. With almost 250 posts, it is time to learn latex.
 
Never mind, I found the mistake in my problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top