ViXXoR
- 6
- 0
Homework Statement
Damping is negligible for a 0.155 kg object hanging from a light 6.30 N/m spring. A sinusoidal force with an amplitutde of 1.70 N drives the system. At what frequency will the force make the object vibrate with an amplitude of 0.440 m?
So:
m=0.155kg
k=6.30N/m
F=1.70N
A=0.440m
Homework Equations
So a given equation is:
A = \frac{\frac{F}{m}}{\sqrt{\beta^2 - \beta o^2 + (\frac{b\beta}{m})^2}}
Also:
\beta o = \sqrt{\frac{k}{m}} so \beta o = \sqrt{\frac{6.30}{0.155}} = 40.6452 rad/s
And:
f = \frac{\beta}{2\pi}
The Attempt at a Solution
Damping is negligible so (\frac{b\beta}{m})^2}} = 0
Rearranging the first equation for \beta:
\beta = \sqrt{\frac{(\frac{F}{m})^2}{A^2} + \beta o^2
Plug in all the values:
\beta = \sqrt{\frac{(\frac{1.70}{0.155})^2}{0.440^2} + 40.6452^2}<br /> <br /> = 47.6799 rad/s
Now using the formula for frequency:
f = \frac{\beta}{2\pi}<br /> <br /> = \frac{47.6799}{2\pi}<br /> <br /> = 7.5885 Hz
It seems my answer is wrong, and I cannot find out where I am going wrong. Any advice would be greatly appreciated.
Thanks
Last edited: