Finding a Function for a Family of Curves

  • Thread starter Thread starter orthogonal
  • Start date Start date
  • Tags Tags
    Curve
orthogonal
Messages
10
Reaction score
0
Hey all,

I am trying to find a function which will give me a family of curves similar to the one shown below. What I am hoping is that a single parameter will control whether the curve starts out slow (like the blue one) or whether the curve starts out fast (like the green one) or whether it is a linear ramp.

Does anyone know of a class of curves like this?

I can find plenty of curves which behave similar to the blue curve (ex. arctan, erf) but none like the green one.

Thanks,

Orthogonal

curves.jpg
 
Last edited:
Mathematics news on Phys.org
orthogonal said:
Hey all,

I am trying to find a function which will give me a family of curves similar to the one shown below. What I am hoping is that a single parameter will control whether the curve starts out slow (like the blue one) or whether the curve starts out fast (like the green one) or whether it is a linear ramp.

Does anyone know of a class of curves like this?

I can find plenty of curves which behave similar to the blue curve (ex. arctan, erf) but none like the green one.

Thanks,

Orthogonal

https://sites.google.com/site/rjaengineering/temp_pic/MWSnap%202014-04-02%2C%2016_34_19.bmp?attredirects=0
Your link is broken.
 
Fixed the link. :)
 
If you know the equation for the blue curve, then can't you just take the inverse to find an equation for the green curve?
 
The green curve is the reflection over the line y=x of the blue curve. So if you have a function f(x) whose graph y = f(x) is the blue curve, then the graph of x = f(y) will give you the green curve. In other words, you want y = f-1(x), where f-1 is the inverse function of f, not its reciprocal.
So, for example, the functions f(x) = pi*arctan(x)/2 and f-1(x) = tan(x*pi/2) (restricted to the domain [-1, 1]) would be the type of pair you seek. These asymptotes may be a bit too slow for you, though.
In particular, you may want to use a scaled smooth transition function: http://en.wikipedia.org/wiki/Non-analytic_smooth_function#Smooth_transition_functions . Since it is 1-1 on the interval of transition, it is invertible there. Although both explicit forms may be aesthetically unpleasant.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top