Finding anitderivative using complex numbers and Euler

Rectifier
Gold Member
Messages
313
Reaction score
4
I have to find a primitive function below using the Euler formulas for ##\sin x## and ## \cos x##

The problem

$$ \int e^{2x} \sin 3x \ dx $$

Relevant equations

## \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \\ \int e^{ix} \ dx = \frac{e^{ix}}{i} ##

The attempt
## \int e^{2x} \sin 3x \ dx = \int e^{2x} \left( \frac{ e^{i3x}-e^{-i3x} }{ 2i } \right) \ dx = \frac{ 1 }{ 2i } \int e^{ 2x }e^{i3x}-e^{2x}e^{-i3x} \ dx = \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx \\ \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx = \frac{1}{2i} \left( \frac{e^{(2+3i)x}}{2+3i}- \frac{e^{(2-3i)x}}{2-3i} \right) \ + C ##

Polar form for ##z=2+i##
##2+3i = \sqrt{13}e^{i \arctan \left( \frac{3}{2} \right) }##

Polar form for ##z=2-i##
##2-3i = \sqrt{13}e^{- i \arctan \left( \frac{3}{2} \right) }##I am looking for a way to advance from this step in my solution process and am therefore not interested in any alternative ways other than using Eulers forumlas above to solve this problem.

Please help.
 
Physics news on Phys.org
It looks good so far. After doing the integration, the next step should be to make the denominators of the two expressions real so that you can get to a common denominator and add them together. So multiply the first expression by \frac{2-3i}{2-3i}, and multiply the second expression by \frac{2+3i}{2+3i}.
 
  • Like
Likes Rectifier
Rectifier said:
I have to find a primitive function below using the Euler formulas for ##\sin x## and ## \cos x##

The problem

$$ \int e^{2x} \sin 3x \ dx $$

Relevant equations

## \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \\ \int e^{ix} \ dx = \frac{e^{ix}}{i} ##

The attempt
## \int e^{2x} \sin 3x \ dx = \int e^{2x} \left( \frac{ e^{i3x}-e^{-i3x} }{ 2i } \right) \ dx = \frac{ 1 }{ 2i } \int e^{ 2x }e^{i3x}-e^{2x}e^{-i3x} \ dx = \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx \\ \frac{1}{2i} \int e^{(2+3i)x}-e^{(2-3i)x} \ dx = \frac{1}{2i} \left( \frac{e^{(2+3i)x}}{2+3i}- \frac{e^{(2-3i)x}}{2-3i} \right) \ + C ##

Polar form for ##z=2+i##
##2+3i = \sqrt{13}e^{i \arctan \left( \frac{3}{2} \right) }##

Polar form for ##z=2-i##
##2-3i = \sqrt{13}e^{- i \arctan \left( \frac{3}{2} \right) }##I am looking for a way to advance from this step in my solution process and am therefore not interested in any alternative ways other than using Eulers forumlas above to solve this problem.

Please help.

Do NOT express ##2 + 3i## in polar form; just use ##e^{(2 + 3i)x} = e^{2x} e^{3ix}## once again after you have done the integration. Using the polar form where it is not needed just makes everything worse.
 
  • Like
Likes Rectifier
When I do that, I get

## \frac{1}{2i} \left( \frac{ e^{2x} e^{3ix} (2-3i)}{(2+3i)(2-3i)}- \frac{e^{2x}e^{-3ix}(2+3i)}{(2+3i)(2-3i)} \right) \ + C = \frac{1}{2i} \left( \frac{ e^{2x} e^{3ix} (2-3i) - e^{2x}e^{-3ix}(2+3i)}{13}\right) \ + C \\ = \frac{e^{2x}}{2i} \left( \frac{ e^{3ix} (2-3i) - e^{-3ix}(2+3i)}{13}\right) \ + C ##

I get stuck here.
 
Rectifier said:
When I do that, I get

## \frac{1}{2i} \left( \frac{ e^{2x} e^{3ix} (2-3i)}{(2+3i)(2-3i)}- \frac{e^{2x}e^{-3ix}(2+3i)}{(2+3i)(2-3i)} \right) \ + C = \frac{1}{2i} \left( \frac{ e^{2x} e^{3ix} (2-3i) - e^{2x}e^{-3ix}(2+3i)}{13}\right) \ + C \\ = \frac{e^{2x}}{2i} \left( \frac{ e^{3ix} (2-3i) - e^{-3ix}(2+3i)}{13}\right) \ + C ##

I get stuck here.

Just use elementary algebra to express ##(a +ib) \times (c + id)## as ## U +iV##; there are standard rules for doing that. Of course, you need to remember that ##e^{\pm 3ix} = \cos(3x) \pm i \sin(3x).##
 
  • Like
Likes Rectifier
Thank you for your help
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top