Are you sure you looked at the region? The region you describe is a box with sides 1, 16 and 1. Where as the region D is, as said before, a paraboloid with an elliptical cross section with a slice taken off parallel to the zy-plane. Let's simplify the problem a little and ignore the plane x=1. Then we're left with a paraboloid with an elliptical cross section.
Now let's replace the function xy by 1 (once we've found the volume of the paraboloid we can just replace 1 by xy and add the x=1 plane to get the correct answer). Now the integral over region D' is the volume of the paraboloid z=16-x^2-y^2 bounded by the coordinate planes.
A few questions about the properties of this region.
1)Does the parabola have a maximum or minimum?
2)What are the coordinates of its maximum/minimum?
3)What kind of shape does the surface of the base of the parabola have? (circle/ellipse)
4)What is the radius or semi major/semi minor axis of this circle/ellipse?
5)Looking at the paraboloid from z=0 and up, the coordinate planes cut the paraboloid in how many pieces? Is it a whole, half or quarter paraboloid?
If you can answer these questions (hopefully they are clear), then you have properly looked at the region. Write down the volume integral for the paraboloid described above, don't bother calculating it. Now add the x=1 plane, how does this change the boundaries? And finally integrate xy over the region D to get the answer you are looking for.