Finding Coef. of x2n: An Easy Way?

  • Thread starter Thread starter Miike012
  • Start date Start date
  • Tags Tags
    Term
AI Thread Summary
The discussion centers on finding the coefficient of x2n in a series without squaring it directly. A method was proposed involving the general nth term and the (n+1)th term, leading to a multiplication that yields a new expression for the coefficient. The coefficient is derived from the sum of a specific series, referencing the Cauchy product for clarity. The conversation emphasizes the desire for a more straightforward approach to determine the coefficient efficiently. Overall, the focus is on simplifying the calculation process for the coefficient of x2n.
Miike012
Messages
1,009
Reaction score
0
After multiplication the coef. of x2n was found which is highlighted in red in the paint document.

My question is, is there an easy way of finding the coef. without actually going through the process of squaring the series given and locating the pattern for the coef. for x2n?

What I tried doing was first I found the general nth term which is

(this is the general term after n=1)
(-1)n-1xn-1/(n-1)1/4

Then I found the (n+1)th term which is
(-1)n-1xn/(n)1/4

Then I multiplied them together and got

x2n-1/(n1/4(n-1)1/4)

and the coef. of x2n is the sum of

x-1/(n1/4(n-1)1/4)

From n = 2 to n = n+1
 

Attachments

  • mult.jpg
    mult.jpg
    18.1 KB · Views: 419
Physics news on Phys.org
See
http://en.wikipedia.org/wiki/Cauchy_product

we have
$$\left( \sum_{k=0}^\infty a_k x^k \right) \left( \sum_{l=0}^\infty b_l x^l \right)=\sum_{j=0}^\infty c_j x^j \\
\text{where} \\
c_j=\sum_{i=0}^j a_i b_{j-i}$$

provided we have enough convergence.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top