Finding Constants in Relativistic Trajectory Problem

E92M3
Messages
64
Reaction score
0

Homework Statement


Given that the trajectory in frame S is:
x=\frac{c^2}{a}(\sqrt{1+\frac{a^2t^2}{c^2}}-1)

Show that in S' that is moving in the +x direction at speed u:
x'=\frac{c^2}{a}\sqrt{1+\frac{a^2(t'-A)^2}{c^2}}-B

Find the constants A and B.

Homework Equations


Lorentz transformation:
x'=\gamma (x-ut)
t'=\gamma (t-\frac{ux}{c^2})



The Attempt at a Solution


x'=\gamma (x-ut)

plug in x:
x'=\gamma \left ( \frac{c^2}{a}(\sqrt{1+\frac{a^2t^2}{c^2}}-1)-ut \right )

Since we want x' in terms of t'... i used:
t=\gamma (t'+\frac{ux'}{c^2} )

x'=\gamma \left [ \frac{c^2}{a}(\sqrt{1+\frac{a^2\gamma^2 (t'+\frac{ux'}{c^2})^2}{c^2}}-1)-u\gamma (t'+\frac{ux'}{c^2}) \right ]

I can group some terms and play around with it:

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2\gamma^4 (t'+\frac{ux'}{c^2})^2}{c^2}}-\frac{\gamma c^2}{a}-u\gamma^2 (t'+\frac{ux'}{c^2})

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 (t'+\frac{ux'}{c^2}) \right )

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t'+\frac{u\gamma^2ux'}{c^2} \right )

x'-\frac{\gamma^2u^2x'}{c^2}= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t' \right )

x'\left (1-\frac{\gamma^2u^2}{c^2} \right )= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t' \right )

As you can see, it becomes very messy quickly. Since this is featured in a past paper, I think there should be some trick to do it quickly.
 
Last edited:
Physics news on Phys.org
E92M3 said:

Homework Statement


Given that the trajectory in frame S is:
x=\frac{c^2}{a}(\sqrt{1+\frac{a^2t^2}{c^2}}-1)

Show that in S' that is moving in the +x direction at speed u:
x'=\frac{c^2}{a}\sqrt{1+\frac{a^2(t'-A)^2}{c^2}}-B

Find the constants A and B.

Homework Equations


Lorentz transformation:
x'=\gamma (x-ut)
t'=\gamma (t-\frac{ux}{c^2})



The Attempt at a Solution


x'=\gamma (x-ut)

plug in x:
x'=\gamma \left ( \frac{c^2}{a}(\sqrt{1+\frac{a^2t^2}{c^2}}-1)-ut \right )

Since we want x' in terms of t'... i used:
t=\gamma (t'+\frac{ux'}{c^2} )

x'=\gamma \left [ \frac{c^2}{a}(\sqrt{1+\frac{a^2\gamma^2 (t'+\frac{ux'}{c^2})^2}{c^2}}-1)-u\gamma (t'+\frac{ux'}{c^2}) \right ]

I can group some terms and play around with it:

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2\gamma^4 (t'+\frac{ux'}{c^2})^2}{c^2}}-\frac{\gamma c^2}{a}-u\gamma^2 (t'+\frac{ux'}{c^2})

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 (t'+\frac{ux'}{c^2}) \right )

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t'+\frac{u\gamma^2ux'}{c^2} \right )

x'-\frac{\gamma^2u^2x'}{c^2}= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t' \right )

x'\left (1-\frac{\gamma^2u^2}{c^2} \right )= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t' \right )

As you can see, it becomes very messy quickly. Since this is featured in a past paper, I think there should be some trick to do it quickly.

what is 'a' (i.e. the small a) , is it the accn of the body
 
E92M3 said:

Homework Statement


Given that the trajectory in frame S is:
x=\frac{c^2}{a}(\sqrt{1+\frac{a^2t^2}{c^2}}-1)

Show that in S' that is moving in the +x direction at speed u:
x'=\frac{c^2}{a}\sqrt{1+\frac{a^2(t'-A)^2}{c^2}}-B

Find the constants A and B.

Homework Equations


Lorentz transformation:
x'=\gamma (x-ut)
t'=\gamma (t-\frac{ux}{c^2})



The Attempt at a Solution


x'=\gamma (x-ut)

plug in x:
x'=\gamma \left ( \frac{c^2}{a}(\sqrt{1+\frac{a^2t^2}{c^2}}-1)-ut \right )

Since we want x' in terms of t'... i used:
t=\gamma (t'+\frac{ux'}{c^2} )

x'=\gamma \left [ \frac{c^2}{a}(\sqrt{1+\frac{a^2\gamma^2 (t'+\frac{ux'}{c^2})^2}{c^2}}-1)-u\gamma (t'+\frac{ux'}{c^2}) \right ]

I can group some terms and play around with it:

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2\gamma^4 (t'+\frac{ux'}{c^2})^2}{c^2}}-\frac{\gamma c^2}{a}-u\gamma^2 (t'+\frac{ux'}{c^2})

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 (t'+\frac{ux'}{c^2}) \right )

x'= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t'+\frac{u\gamma^2ux'}{c^2} \right )

x'-\frac{\gamma^2u^2x'}{c^2}= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t' \right )

x'\left (1-\frac{\gamma^2u^2}{c^2} \right )= \frac{c^2}{a}\sqrt{\gamma^2+\frac{a^2 (\gamma^2t'+\frac{\gamma^2ux'}{c^2})^2}{c^2}}-\left ( \frac{\gamma c^2}{a}+u\gamma^2 t' \right )

As you can see, it becomes very messy quickly. Since this is featured in a past paper, I think there should be some trick to do it quickly.

what is 'a' (i.e. the small a) , is it the accn of the body

takin it as a const its already pretty complicated
 
"a" is just a constant.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top