hastings
- 80
- 0
[SOLVED] finding coulmb's force
Problem:
A very long straight wire has a uniform linear density charge, λ (every dx, linear unit, has a λ charge). At a distance D, from the wire, there's a rectangular layer with length=a and height=b and a uniform superficial density charge, σ (every dS, superficial unit, has a σ charge). Find the electrostatic force between the 2 objects.
What I did:
(1)F=\int dF
(2)dF=\frac{1}{4\pi \varepsilon_0} \frac{dq_1 \cdot dq_2}{x^2}
(3)dq_1=\lambda dx
(4)dq_2=\sigma dS \text{ (* When integrating dS becomes S=a $\cdot$ b)}
(5)F=\int dF=\int_D^{D+a} \frac{1}{4\pi \varepsilon_0} \frac{(\lambda dx) \cdot \sigma dS }{x^2} = \frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0} \int_D^{D+a} \frac{1}{x^2}dx
(6)=\frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0}(-\frac{1}{x})_D^{D+a}= \frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0} (\frac{1}{D}-\frac{1}{D+a}) =\frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0}\frac{a}{D(D+a)}
(7)=\frac{\lambda \sigma (a^2 b)}{4\pi \varepsilon_0 \ D(D+a)}
Is my reasoning right? Or, where did I mistake? Please check out the little drawing in the attachment.
Thank you.
Problem:
A very long straight wire has a uniform linear density charge, λ (every dx, linear unit, has a λ charge). At a distance D, from the wire, there's a rectangular layer with length=a and height=b and a uniform superficial density charge, σ (every dS, superficial unit, has a σ charge). Find the electrostatic force between the 2 objects.
What I did:
(1)F=\int dF
(2)dF=\frac{1}{4\pi \varepsilon_0} \frac{dq_1 \cdot dq_2}{x^2}
(3)dq_1=\lambda dx
(4)dq_2=\sigma dS \text{ (* When integrating dS becomes S=a $\cdot$ b)}
(5)F=\int dF=\int_D^{D+a} \frac{1}{4\pi \varepsilon_0} \frac{(\lambda dx) \cdot \sigma dS }{x^2} = \frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0} \int_D^{D+a} \frac{1}{x^2}dx
(6)=\frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0}(-\frac{1}{x})_D^{D+a}= \frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0} (\frac{1}{D}-\frac{1}{D+a}) =\frac{\lambda \sigma (a \cdot b)}{4\pi \varepsilon_0}\frac{a}{D(D+a)}
(7)=\frac{\lambda \sigma (a^2 b)}{4\pi \varepsilon_0 \ D(D+a)}
Is my reasoning right? Or, where did I mistake? Please check out the little drawing in the attachment.
Thank you.
Attachments
Last edited: