U.Renko
- 56
- 1
Homework Statement
A resistor with resistance R and a capacitor with capacitance C are connected in series to a direct current battery ε.
find the current and charge on the circuit as function of time.
it looks more like a review of differential equations, so I'm not really sure if I should post here or in the calculus forum...feel free to move it if you think it's better.
Homework Equations
potential at resistor: V_r = Ri
potential at capacitor:V_c = \frac{q}{C}
The Attempt at a Solution
Applying one of the Kirchhoff's law:
\epsilon - Ri - \frac{q}{C} = 0
\epsilon = Ri +\frac{q}{C}
since i = \frac{dq}{dt} we can rewrite the equation as
\frac{\epsilon}{R} = \frac{dq}{dt} + \frac{q}{RC} and solve with an integration factor e^{\frac{t}{RC}}
so we have:
\frac{\epsilon}{R} e^{\frac{t}{RC}} = \frac{d}{dt}(q e^{\frac{t}{RC}})
and then:
\int \frac{\epsilon}{R} e^{\frac{t}{RC}} dt = q e^{\frac{t}{RC}}
here I'm kinda stuck:
because the problem did not give any initial conditions, should I just solve an indefinite integral or integrate from zero to an arbitrary t??
also: q e^{\frac{t}{RC}} comes from integrating \int_{a}^{b} \frac{d}{dt}(q e^{\frac{t}{RC}})dt and applying the fundamental theorem of calculus.
However, don't I need the values a and b to properly use it?