Finding e^A for 2x2 Matrix: Issues with Det(A-(Lambda)I)

  • Thread starter Thread starter scienceman2k9
  • Start date Start date
  • Tags Tags
    Matrix
scienceman2k9
Messages
12
Reaction score
0
I need to find e^A of this 2x2 matrix...A= 1 1
-1 -1

When I do det(A-(lambda)I) I get 0 for the eigenvalues, which makes no sense. Am I doing something wrong?
 
Physics news on Phys.org
Probably not. If the matrix is singular then at least one of the eigenvalues will be zero
Hmm...
det(A-I \lambda )=(-\lambda+1)(-\lambda-1)+1=\lambda^2
So 0 is a double root, and both of the eigenvalues are zero.

Why don't you see what happens if you apply this matrix to a vector?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top