I prefer to work from the basic definitions (perhaps I just never learned these more sophisticated methods!):
Saying that 2 is an eigenvalue of this matrix means there exist a non-zero vector such that
\begin{bmatrix}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix}x - y- z\\ -x+ y- z \\ -x- y+ z\end{bmatrix}= \begin{bmatrix}2x \\ 2y\\ 2z\end{bmatrix}
which gives the three equations x- y- z= 2x, -x+ y- z= 2y, -x- y+ z= 2z which are, of course, equivalent to -x- y- z= 0, -x- y- z= 0, -x- y- z= 0. Those three equations are the same. We can, for example, say that z= -x- y so that any vector of the form <x, y, -x- y>= <x, 0, -x>+ <0, y, -y>= x<1, 0, -1>+ y<0, 1, -1> is an eigenvector. Notice that the eigenvalue, 2, not only has algebraic multiplicity 2 (it is a double root of the characteristic equation) but has geometric multiplicity 2 (the space of all corresponding eigenvalues is 2 dimensional).
Similarly, the fact that -1 is an eigenvalue means there are x, y, z, satisfying x- y- z= -x, -x+ y- z= -y, -x- y+ z= -z which are, of course, equivalent to 2x- y- z= 0, -x+ 2y- z= 0, -x- y+ 2z= 0. If we subtract the second equation from the first, we eliminate z to get 3x- 3y= 0 so y= x. Putting that into the third equation, 2x+ 2z= 0 so z= -x.
Any eigenvector corresponding to eigenvalue -1 is of the form <x, x, -x>= x<1, 1, -1>.