A Finding Equilibriums on a Cone with a Chain Loop

  • A
  • Thread starter Thread starter wrobel
  • Start date Start date
  • Tags Tags
    Chain Cone Loop
AI Thread Summary
A right circular cone with a smooth surface and a thin homogeneous chain loop can exhibit equilibrium states under gravitational influence. The primary equilibrium occurs when the loop rests in the horizontal plane, which minimizes the chain's potential energy. For cones with a vertex angle between π/3 and π/2, there are two equilibrium states: the horizontal position and another non-planar configuration. For other vertex angle values, only the horizontal equilibrium exists. The discussion highlights the application of variational calculus to determine these equilibrium states.
wrobel
Science Advisor
Insights Author
Messages
1,126
Reaction score
982
Imagine a right circular cone with smooth surface. The cone is stated such that its axis is parallel to the standard gravitational field g. And you have a piece a thin homogeneous chain. Then you connect the tips of the chain to obtain a loop. You put this loop on the cone:
bfc69151eab9.png

It is clear, there is a state such that whole the loop forms the circle and rests in the horizontal plane. Are there another equilibriums? How many equilibriums does this system have?

(I know the answer and the solution. It is just for those who doesn't know what to do on weekends evenings :) I enjoyed solving this problem and share it with PF :)
 
Physics news on Phys.org
If we neglect friction then, I would guess that it resting in the horizontal plane is the only equilibrium point. Not wanting to get into the calculus of veriations, if I imagine just turning the gravity up to absurd levels, it seems like the chain would end up resting flat.

Also, if we consider the set of chain positions of ellipses on the cone, then the circle in the horizontal plane is where the center of mass of the chain would be lowest (of that set), and where the chain would have a minimum total potential energy.

But then, ellipses are just a small subset of possible ways to wrap a chain once around a cone. I'd be interested in knowing what the real answer is, though.
 
Yes indeed it is a task for variational calculus. Let ##\beta\in(0,\pi)## stand for the cone's vertex angle.

Theorem. If ##\pi/3<\beta<\pi/2## then wrapped once loop of the chain has only two (up to rotational symmetry) equilibriums: 1) the trivial one when whole the chain is in the horizontal plane and 2) some another equilibrium when the loop is not belonged to any plane.
For all other values of ##\beta## there is only trivial equilibrium.
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top