Finding expectation values for given operators

AI Thread Summary
The discussion revolves around calculating expectation values for operators U, G, and S related to the Hamiltonian of an electron in solids. The user initially struggles with the Dirac notation and the application of the hint provided by the professor, which suggests expanding the operators in terms of powers of H. After some attempts, they find that the expectation values for U and S simplify to 1/e and sin(i), respectively, but express concern about using the time-dependent form of H. Clarifications are provided regarding the proper treatment of infinite sums and the substitution of eigenvalues, leading to a better understanding of how to approach part b of the problem. The conversation emphasizes the importance of maintaining distinct indices in summations and the normalization of the state |Ψ>.
phys-student
Messages
32
Reaction score
0

Homework Statement


The Hamiltonian of an electron in solids is given by H. We know that H is an Hermitian operator, it satisfies the following eigenvalue equation:

H|Φn> = εnn>

Let us define the following operators in terms of H as:

U = e^[(iHt)/ħ] , S = sin[(Ht)/ħ] , G = (ε - H)-1

a) Find the expectation value of U, G and S operators in state |Φn> as:
n|U|Φn>
n|S|Φn>
n|G|Φn>

b) Now considr that electron is in state |Ψ> = e ∑ |Φn> (where ∑ denotes an infinite sum from n = 0 to n = ∞), where α is a complex variable. Calculate the expectation value of U, G, and S operators in state |Ψ>.

Homework Equations


H = (-ħ/2m)*(d2/dx2)
H = iħ*(d/dt)
Hint from professor: ex = ∑xn/n!

The Attempt at a Solution


It's been a long time since I took the pre-requisite courses for this quantum course so I am having a lot of problems figuring out how to do this question. I saw online that H could be expressed as iħ*(d/dt), plugging that into the equations for U and S simplifies them to 1/e and sin(i) respectively. After being simplified they can be removed from the brackets leaving me with:

(1/e)*<Φnn> and sin(i)<Φnn>

For both of these expressions the term in brackets is equal to 1, leaving me with an expectation value of 1/e for U and sin(i) for S. Can someone tell me if my approach is correct? The textbook for the course only expresses H in position dependent form (first relevant equation) and not in the time dependent form I have used, so I feel as though I'm "cheating" somehow and I won't get full marks. We probably have to solve it using the hint (3rd relevant equation) somehow but I don't understand how. Aside from that I have no idea how to find the expectation value for G and I haven't even gotten to part b yet. Any help would be appreciated.
 
Physics news on Phys.org
phys-student said:
|Ψ> = e-α ∑ |Φn>
The question asks you to calculate the expectation values with respect to ##|\phi_n\rangle##, which is known to be an eigenstate of ##H##, therefore you don't need to define your own state.
phys-student said:
Hint from professor: ex = ∑xn/n!
You should consider this hint instead. This hint tells you that you can expand a smooth function of x in terms of its powers. Do the same with ##U##, ##G##, and ##S##, namely expand each of these function operators in terms of powers of ##H##.
 
I've tried expressing U in terms of powers of H and got the following:

e(iHt/ħ) = [e(it/ħ)]H = ∑(H^n)/n! = 1 + H + H2/2 + H3/6 +...

What exactly am I supposed to do with this now?... I think my main source of confusion is that I'm unfamiliar with Dirac notation (which unfortunately seems to be a big part of the course). Is the following statement valid?

<U> = <[e(it/ħ)]H>
= <∑Hn/n!>
= <Φn|∑εn/n!|Φn>
= ∑εn/n!<Φnn> = ∑εn/n!

Am I allowed to pull an infinite sum outside the brackets like that? Am I allowed to simply substitute ε for H like I did in the 3rd line? Is it okay to leave the expectation value as an infinite sum? Sorry if these are stupid questions I'm just having a lot of trouble with this question
 
phys-student said:
[e(it/ħ)]H = ∑(H^n)/n!
More correctly, it should be
$$
e^{iHt/\hbar} = \sum_{n=0} \frac{1}{n!} \left(\frac{iHt}{\hbar}\right)^n
$$
phys-student said:
<Φn|∑εn/n!|Φn>
You must not use the same index between the states and the summation, make them different. Also don't forget to include the factor ##\frac{it}{\hbar}##.
phys-student said:
Am I allowed to pull an infinite sum outside the brackets like that?
As I have mentioned above, the kets should actually have different index from that of the sum. In other words, these kets were not originally part of the summation. Therefore you can bring them inside the summation sign.
phys-student said:
Am I allowed to simply substitute ε for H like I did in the 3rd line?
That "substitution" actually follows from
$$
H^n|\phi_m\rangle = \epsilon_m^n |\phi_m\rangle
$$
phys-student said:
Is it okay to leave the expectation value as an infinite sum?
Pay attention in the form of the series at the end of your calculation. Does it look similar to the series you have in the beginning when you expand the exponential operator?
 
Thank you, I've been able to get through all of part a. I'm on part b now, and I'm not sure how to express <Ψ|U|Ψ>...

Given that |Ψ> = e∑|Φn>

Can <Ψ|U|Ψ> be expressed as:

<Ψ|U|Ψ> = e∑<Φn|U|Φn>

So then the expectation value of U in state Ψ, is the infinite sum of the expectation value found in part a (in state Φn) multiplied by the constant e?
 
phys-student said:
|Ψ> = e-α ∑ |Φn>
The form of ##|\psi\rangle## given above actually looks fishy to me. All basis in the series have equal probability, I'm not sure if such form is normalizable.
Despite of that, when calculating the expectation value of an operator with respect to states which are written as linear combination of some basis, you have to retain both sums. In this problem you want to calculate ##\langle \psi |U| \psi \rangle##, with ##|\psi \rangle = e^{-\alpha} \sum_n |\phi_n\rangle##. Therefore
$$
\langle \psi |U| \psi \rangle = e^{-\alpha^*} \sum_n \langle \phi_n| U e^{-\alpha} \sum_m |\phi_m\rangle = e^{-2\Re[\alpha]}\sum_m \sum_n \langle \phi_n |U| \phi_m \rangle
$$
Since you know how ##U## acts on ##|\phi_m\rangle##, seeing what the next step is should be easy for you.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top