Finding general soln of differential eqn (zero under the root)

darryw
Messages
124
Reaction score
0

Homework Statement



9y'' + 6y' + y = 0

r^2 + 6r + 1

( -6 +/- root 36 - 36 ) / 18

lamda = -6/18 = -(2/9)
mu = 0

(this is the part I am unsure about, because if i end up with a zero under the root, then does this make the final equation into this:

y = c_1*cos(0*x) + c_2*sin(0*x)

thanks for any help.

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
First, -\frac{6}{18}=-\frac{1}{3}\neq-\frac{2}{9}[/tex]. <br /> <br /> Second, when you have a double root, \lambda, you look for a solution of the form y(t)=C_1e^{\lambda t}+C_2 t e^{\lambda t}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top