Finding hypberbolic/exponential limit

  • Thread starter Thread starter silicon_hobo
  • Start date Start date
  • Tags Tags
    Limit
silicon_hobo
Messages
59
Reaction score
0
[SOLVED] finding hypberbolic/exponential limit

Homework Statement


Find:
\mathop{\lim} \limits_{x \to \infty} \frac{cosh(2x)}{e^2^x}

Homework Equations


cosh = \frac{e^x+e^-^x}{2}

The Attempt at a Solution


\mathop{\lim} \limits_{x \to \infty} \frac{cosh(2x)}{e^2^x} \rightarrow \frac{\frac{e^2^x+e^-^2^x}{2}}{e^2^x} \rightarrow \frac{e^2^x+e^-^2^x}{2}*\frac{1}{e^2^x} \rightarrow \frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \rightarrow \frac{2x}{2x\ln2} - \frac{2x}{2x\ln2} = 0

Hey, it's me again. This latex script is groovy. Am I on the right track here? Cheers.
 
Physics news on Phys.org
\lim_{x\rightarrow\infty}\frac{\cosh{2x}}{e^{2x}}

\lim_{x\rightarrow\infty}\frac{e^{2x}+e^{-2x}}{2e^{2x}}

\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^{2x}}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)

Take it from here ...
 
Last edited:
I have no idea what
\frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \
means!
 
Thanks for the replies.

HallsofIvy said:
I have no idea what
\frac{\ln}{\ln} (\frac{e^2^x+e^-^2^x}{2e^2^x}) \
means!

I thought I should take the ln of the fraction to eliminate the exponents. However, rocophysics' reply indicates this strategy was incorrect. Unfortunately, I am still confused.

rocophysics said:
\lim_{x\rightarrow\infty}\frac{\cosh{2x}}{e^{2x}}

\lim_{x\rightarrow\infty}\frac{e^x+e^{-x}}{2e^{2x}}

\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^x}{e^{2x}}+\frac{e^{-x}}{e^{2x}}\right)

Take it from here ...

On account of the cosh(2x) in the original problem, I believe steps 2 and 3 quoted above should read as follows:

\lim_{x\rightarrow\infty}\frac{e^{2x}+e^{-2x}}{2e^{2x}}

\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^2^x}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)

and then maybe...

\frac 1 2\lim_{x\rightarrow\infty}\left(2\right) = 1

?
 
SHOOT! So sorry :) Thank you for fixing it ... I was so caught up on the LaTeX, lol.

So your answer is 1/2
 
rocophysics said:
So your answer is 1/2

Hmmm. If \left(\frac{e^2^x}{e^{2x}}+\frac{e^{-2x}}{e^{2x}}\right)=2 shouldn't the answer be 1?

Thanks!
 
I pulled out the 1/2 infront of the limit.

\frac 1 2\lim_{x\rightarrow\infty}\left(\frac{e^{2x}}{e^{2 x}}+\frac{e^{-2x}}{e^{2x}}\right)

\frac 1 2\lim_{x\rightarrow\infty}\left(1+\frac{1}{e^{4x}}\right)

\frac 1 2\lim_{x\rightarrow\infty}\left(1+0\right)
 
Aha! I've got it now. Thanks.
 
Back
Top