Contingency
- 41
- 0
Homework Statement
This isn't my homework problem, but I'd like to know how to prove \sum _{ n=0 }^{ \infty }{ \frac { n }{ { \alpha }^{ n } } } =\quad \frac { \alpha }{ { (\alpha -1) }^{ 2 } }
I only know basic convergence tests (including the integral test), and that
\forall |\alpha |<1\quad \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { \alpha }^{ n } } } =\frac { 1 }{ 1-\alpha }
Also, can anyone list some tools to tackle these problems with?
Homework Equations
\forall |\alpha |<1\quad \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { \alpha }^{ n } } } =\frac { 1 }{ 1-\alpha }
Edit: correction to geometric series equation: \forall |\alpha |<1\quad \sum _{ n=0 }^{ \infty }{ { \alpha }^{ n } } =\frac { 1 }{ 1-\alpha }
Last edited: